• Je něco špatně v tomto záznamu ?

Isolation and Characterization of Chitosans from Different Fungi with Special Emphasis on Zygomycetous Dimorphic Fungus Benjaminiella poitrasii: Evaluation of Its Chitosan Nanoparticles for the Inhibition of Human Pathogenic Fungi

S. Mane, E. Pathan, S. Tupe, S. Deshmukh, D. Kale, V. Ghormade, B. Chaudhari, M. Deshpande

. 2022 ; 23 (3) : 808-815. [pub] 20220111

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019189

The cell wall chitosan was extracted from fungi belonging to different taxonomic classes, namely, Benjaminiella poitrasii (Zygomycetes, dimorphic), Hanseniaspora guilliermondii, Issatchenkia orientalis, Pichia membranifaciens, and Saccharomyces cerevisiae (Ascomycetes, yeasts), and Agaricus bisporus and Pleurotus sajor-caju (Basidiomycetes). The maximum yield of chitosan was 60.89 ± 2.30 mg/g of dry mycelial biomass of B. poitrasii. The degree of deacetylation (DDA) of chitosan extracted from different fungi, as observed with 1H NMR, was in the range of 70-93%. B. poitrasii chitosan exhibited the highest DDA (92.78%). The characteristic absorption bands were observed at 3450, 1650, 1420, 1320, and 1035 cm-1 by FTIR. Compared to chitosan from marine sources (molecular weight, MW, 585 kDa), fungal chitosans showed lower MW (6.21-46.33 kDa). Further, to improve the efficacy of B. poitrasii chitosan (Bp), nanoparticles (Np) were synthesized using the ionic gelation method and characterized by dynamic light scattering (DLS). For yeast and hyphal chitosan nanoparticles (BpYCNp and BpHCNp), the average particle size was <200 nm with polydispersity index of 0.341 ± 0.03 and 0.388 ± 0.002, respectively, and the zeta potential values were 21.64 ± 0.34 and 24.48 ± 1.58 mV, respectively. The B. poitrasii chitosans and their nanoparticles were further evaluated for antifungal activity against human pathogenic Candida albicans ATCC 10231, Candida glabrata NCYC 388, Candida tropicalis ATCC 750, Cryptococcus neoformans ATCC 34664, and Aspergillus niger ATCC 10578. BpHCNps showed lower MIC90 values (0.025-0.4 mg/mL) than the chitosan polymer against the tested human pathogens. The study suggested that nanoformulation of fungal chitosan, which has low molecular weight and high % DDA, is desirable for antifungal applications against human pathogens. Moreover, chitosans as well as their nanoparticles were found to be hemocompatible and are therefore safe for healthcare applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019189
003      
CZ-PrNML
005      
20220804135422.0
007      
ta
008      
220720s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.biomac.1c01248 $2 doi
035    __
$a (PubMed)35015505
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mane, Shamala $u Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India $u Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
245    10
$a Isolation and Characterization of Chitosans from Different Fungi with Special Emphasis on Zygomycetous Dimorphic Fungus Benjaminiella poitrasii: Evaluation of Its Chitosan Nanoparticles for the Inhibition of Human Pathogenic Fungi / $c S. Mane, E. Pathan, S. Tupe, S. Deshmukh, D. Kale, V. Ghormade, B. Chaudhari, M. Deshpande
520    9_
$a The cell wall chitosan was extracted from fungi belonging to different taxonomic classes, namely, Benjaminiella poitrasii (Zygomycetes, dimorphic), Hanseniaspora guilliermondii, Issatchenkia orientalis, Pichia membranifaciens, and Saccharomyces cerevisiae (Ascomycetes, yeasts), and Agaricus bisporus and Pleurotus sajor-caju (Basidiomycetes). The maximum yield of chitosan was 60.89 ± 2.30 mg/g of dry mycelial biomass of B. poitrasii. The degree of deacetylation (DDA) of chitosan extracted from different fungi, as observed with 1H NMR, was in the range of 70-93%. B. poitrasii chitosan exhibited the highest DDA (92.78%). The characteristic absorption bands were observed at 3450, 1650, 1420, 1320, and 1035 cm-1 by FTIR. Compared to chitosan from marine sources (molecular weight, MW, 585 kDa), fungal chitosans showed lower MW (6.21-46.33 kDa). Further, to improve the efficacy of B. poitrasii chitosan (Bp), nanoparticles (Np) were synthesized using the ionic gelation method and characterized by dynamic light scattering (DLS). For yeast and hyphal chitosan nanoparticles (BpYCNp and BpHCNp), the average particle size was <200 nm with polydispersity index of 0.341 ± 0.03 and 0.388 ± 0.002, respectively, and the zeta potential values were 21.64 ± 0.34 and 24.48 ± 1.58 mV, respectively. The B. poitrasii chitosans and their nanoparticles were further evaluated for antifungal activity against human pathogenic Candida albicans ATCC 10231, Candida glabrata NCYC 388, Candida tropicalis ATCC 750, Cryptococcus neoformans ATCC 34664, and Aspergillus niger ATCC 10578. BpHCNps showed lower MIC90 values (0.025-0.4 mg/mL) than the chitosan polymer against the tested human pathogens. The study suggested that nanoformulation of fungal chitosan, which has low molecular weight and high % DDA, is desirable for antifungal applications against human pathogens. Moreover, chitosans as well as their nanoparticles were found to be hemocompatible and are therefore safe for healthcare applications.
650    _2
$a antifungální látky $x farmakologie $7 D000935
650    12
$a chitosan $x farmakologie $7 D048271
650    _2
$a houby $7 D005658
650    _2
$a lidé $7 D006801
650    12
$a Mucorales $x chemie $7 D009090
650    12
$a nanočástice $7 D053758
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pathan, Ejaj $u Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
700    1_
$a Tupe, Santosh $u Greenvention Biotech Pvt. Ltd., Pune 412202, India
700    1_
$a Deshmukh, Sneha $u Nanobioscience, Agharkar Research Institute, Pune 411004, India $u Savitribbai Phule Pune University, Pune 411008, India
700    1_
$a Kale, Deepika $u Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Science, Prague 4 14220, Czech Republic
700    1_
$a Ghormade, Vandana $u Nanobioscience, Agharkar Research Institute, Pune 411004, India $u Savitribbai Phule Pune University, Pune 411008, India
700    1_
$a Chaudhari, Bhushan $u Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India $u Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
700    1_
$a Deshpande, Mukund $u Greenvention Biotech Pvt. Ltd., Pune 412202, India $1 https://orcid.org/0000000279667275
773    0_
$w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 23, č. 3 (2022), s. 808-815
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35015505 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135416 $b ABA008
999    __
$a ok $b bmc $g 1822682 $s 1170432
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 23 $c 3 $d 808-815 $e 20220111 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...