• Something wrong with this record ?

Hydrolytically degradable polymer micelles for drug delivery: a SAXS/SANS kinetic study

SK. Filippov, JM. Franklin, PV. Konarev, P. Chytil, T. Etrych, A. Bogomolova, M. Dyakonova, CM. Papadakis, A. Radulescu, K. Ulbrich, P. Stepanek, DI. Svergun,

. 2013 ; 14 (11) : 4061-70.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

We report kinetic studies of therapeutically highly potent polymer-drug conjugates consisting of amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers bearing the anticancer drug doxorubicin (Dox). Highly hydrophobic cholesterol moieties as well as the drug were attached to the polymer backbone by a pH-sensitive hydrazone bond. Moreover, the structure of the spacer between the polymer carrier and the cholesterol moiety differed in order to influence the release rate of the hydrophobic moiety, and thus the disintegration of the high-molecular-weight micellar nanoparticle structure. We performed time-dependent SAXS/SANS measurements after changing pH from a typical blood value (pH 7.2) to that of tumor cells (pH 5.0) to characterize the drug release and changes in particle size and shape. Nanoparticles composed of the conjugates containing Dox were generally larger than the drug-free ones. For most conjugates, nanoparticle growth or decay was observed in the time range of several hours. It was established that the growth/decay rate and the steady-state size of nanoparticles depend on the spacer structure. From analytical fitting, we conclude that the most probable structure of the nanoparticles was a core-shell or a core with attached Gaussian chains. We concluded that the spacer structure determined the fate of a cholesterol derivative after the pH jump. Fitting results for 5α-cholestan-3-onecholestan-3-one and cholesteryl-4-oxopentanoate (Lev-chol) implied that cholesterol moieties continuously escape from the core of the nanoparticle core and concentrate in the hydrophilic shell. In contrast, cholest-4-en-3-one spacer prevent cholesterol escaping. Dox moiety release was only observed after a change in pH. Such findings justify the model proposed in our previous paper. Lastly, the cholesteryl 4-(2-oxopropyl)benzoate (Opb-Chol) was a different case where after the release of hydrophobic Opb-Chol moieties, the core becomes more compact. The physicochemical mechanisms responsible for the scenarios of the different spacers are discussed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14063926
003      
CZ-PrNML
005      
20140707125025.0
007      
ta
008      
140704s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/bm401186z $2 doi
035    __
$a (PubMed)24083567
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Filippov, Sergey K $u Institute of Macromolecular Chemistry, AS CR , Heyrovsky Sq. 2, Prague, Prague 6, 162 06, Czech Republic.
245    10
$a Hydrolytically degradable polymer micelles for drug delivery: a SAXS/SANS kinetic study / $c SK. Filippov, JM. Franklin, PV. Konarev, P. Chytil, T. Etrych, A. Bogomolova, M. Dyakonova, CM. Papadakis, A. Radulescu, K. Ulbrich, P. Stepanek, DI. Svergun,
520    9_
$a We report kinetic studies of therapeutically highly potent polymer-drug conjugates consisting of amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers bearing the anticancer drug doxorubicin (Dox). Highly hydrophobic cholesterol moieties as well as the drug were attached to the polymer backbone by a pH-sensitive hydrazone bond. Moreover, the structure of the spacer between the polymer carrier and the cholesterol moiety differed in order to influence the release rate of the hydrophobic moiety, and thus the disintegration of the high-molecular-weight micellar nanoparticle structure. We performed time-dependent SAXS/SANS measurements after changing pH from a typical blood value (pH 7.2) to that of tumor cells (pH 5.0) to characterize the drug release and changes in particle size and shape. Nanoparticles composed of the conjugates containing Dox were generally larger than the drug-free ones. For most conjugates, nanoparticle growth or decay was observed in the time range of several hours. It was established that the growth/decay rate and the steady-state size of nanoparticles depend on the spacer structure. From analytical fitting, we conclude that the most probable structure of the nanoparticles was a core-shell or a core with attached Gaussian chains. We concluded that the spacer structure determined the fate of a cholesterol derivative after the pH jump. Fitting results for 5α-cholestan-3-onecholestan-3-one and cholesteryl-4-oxopentanoate (Lev-chol) implied that cholesterol moieties continuously escape from the core of the nanoparticle core and concentrate in the hydrophilic shell. In contrast, cholest-4-en-3-one spacer prevent cholesterol escaping. Dox moiety release was only observed after a change in pH. Such findings justify the model proposed in our previous paper. Lastly, the cholesteryl 4-(2-oxopropyl)benzoate (Opb-Chol) was a different case where after the release of hydrophobic Opb-Chol moieties, the core becomes more compact. The physicochemical mechanisms responsible for the scenarios of the different spacers are discussed.
650    _2
$a akrylamidy $x chemie $7 D000178
650    _2
$a protinádorové látky $x aplikace a dávkování $7 D000970
650    _2
$a cholesterol $x chemie $7 D002784
650    _2
$a doxorubicin $x aplikace a dávkování $7 D004317
650    12
$a lékové transportní systémy $7 D016503
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a hydrolýza $7 D006868
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a kinetika $7 D007700
650    12
$a micely $7 D008823
650    _2
$a molekulární struktura $7 D015394
650    _2
$a neutronová difrakce $7 D033363
650    _2
$a velikost částic $7 D010316
650    _2
$a kyseliny polymethakrylové $x chemie $7 D011109
650    _2
$a maloúhlový rozptyl $7 D053838
650    _2
$a povrchové vlastnosti $7 D013499
650    _2
$a časové faktory $7 D013997
650    _2
$a difrakce rentgenového záření $7 D014961
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Franklin, John M
700    1_
$a Konarev, Petr V
700    1_
$a Chytil, Petr
700    1_
$a Etrych, Tomas
700    1_
$a Bogomolova, Anna
700    1_
$a Dyakonova, Margarita
700    1_
$a Papadakis, Christine M
700    1_
$a Radulescu, Aurel
700    1_
$a Ulbrich, Karel
700    1_
$a Stepanek, Petr
700    1_
$a Svergun, Dmitri I
773    0_
$w MED00006456 $t Biomacromolecules $x 1526-4602 $g Roč. 14, č. 11 (2013), s. 4061-70
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24083567 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140704 $b ABA008
991    __
$a 20140707125314 $b ABA008
999    __
$a ok $b bmc $g 1031410 $s 862658
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 14 $c 11 $d 4061-70 $i 1526-4602 $m Biomacromolecules $n Biomacromolecules $x MED00006456
LZP    __
$a Pubmed-20140704

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...