Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Approach to map nanotopography of cell surface receptors

C. Franke, T. Chum, Z. Kvíčalová, D. Glatzová, GJ. Gentsch, A. Rodriguez, DA. Helmerich, L. Herdly, H. Mavila, O. Frank, T. Brdička, S. van de Linde, M. Cebecauer

. 2022 ; 5 (1) : 218. [pub] 20220309

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019207

Grantová podpora
SBF003\1163 Wellcome Trust (Wellcome)
Wellcome Trust - United Kingdom
19-0704S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
EP/N509760/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
2031229 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
British Heart Foundation - United Kingdom

Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019207
003      
CZ-PrNML
005      
20220804135434.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s42003-022-03152-y $2 doi
035    __
$a (PubMed)35264712
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Franke, Christian $u Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany. christian.franke@uni-jena.de $u Jena Center for Soft Matter, Friedrich Schiller University Jena, Jena, Germany. christian.franke@uni-jena.de $u Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany. christian.franke@uni-jena.de $1 https://orcid.org/0000000203267232
245    10
$a Approach to map nanotopography of cell surface receptors / $c C. Franke, T. Chum, Z. Kvíčalová, D. Glatzová, GJ. Gentsch, A. Rodriguez, DA. Helmerich, L. Herdly, H. Mavila, O. Frank, T. Brdička, S. van de Linde, M. Cebecauer
520    9_
$a Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    12
$a nanotechnologie $7 D036103
650    12
$a receptory buněčného povrchu $x metabolismus $7 D011956
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Chum, Tomáš $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Kvíčalová, Zuzana $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Glatzová, Daniela $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic $u Laboratory of Leukocyte Signalling, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Gentsch, Gregor Jörg $u Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, Jena, Germany $1 https://orcid.org/0000000347909388
700    1_
$a Rodriguez, Alvaro $u Department of Electrochemical Materials, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000337036712
700    1_
$a Helmerich, Dominic A $u Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
700    1_
$a Herdly, Lucas $u Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
700    1_
$a Mavila, Harsha $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Frank, Otakar $u Department of Electrochemical Materials, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000296616250
700    1_
$a Brdička, Tomáš $u Laboratory of Leukocyte Signalling, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a van de Linde, Sebastian $u Department of Physics, SUPA, University of Strathclyde, Glasgow, UK. s.vandelinde@strath.ac.uk $1 https://orcid.org/000000027977840X
700    1_
$a Cebecauer, Marek $u Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic. marek.cebecauer@jh-inst.cas.cz $1 https://orcid.org/0000000246061218
773    0_
$w MED00197237 $t Communications biology $x 2399-3642 $g Roč. 5, č. 1 (2022), s. 218
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35264712 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135428 $b ABA008
999    __
$a ok $b bmc $g 1822698 $s 1170450
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 5 $c 1 $d 218 $e 20220309 $i 2399-3642 $m Communications biology $n Commun Biol $x MED00197237
GRA    __
$a SBF003\1163 $p Wellcome Trust (Wellcome)
GRA    __
$p Wellcome Trust $2 United Kingdom
GRA    __
$a 19-0704S $p Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
GRA    __
$a EP/N509760/1 $p RCUK | Engineering and Physical Sciences Research Council (EPSRC)
GRA    __
$a 2031229 $p RCUK | Engineering and Physical Sciences Research Council (EPSRC)
GRA    __
$p British Heart Foundation $2 United Kingdom
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...