-
Je něco špatně v tomto záznamu ?
Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs
S. Giallongo, D. Řeháková, T. Biagini, O. Lo Re, P. Raina, G. Lochmanová, Z. Zdráhal, I. Resnick, P. Pata, I. Pata, M. Mistrík, JP. de Magalhães, T. Mazza, I. Koutná, M. Vinciguerra
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
208375/Z/17/Z
Wellcome Trust - United Kingdom
PubMed
35511867
DOI
10.1093/stmcls/sxab004
Knihovny.cz E-zdroje
- MeSH
- DNA MeSH
- endoteliální buňky metabolismus MeSH
- histony * metabolismus MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- lidé MeSH
- myši MeSH
- oprava DNA MeSH
- protein XRCC1 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Chemistry and Biotechnology Tallinn University of Technology Tallinn Estonia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Medical Genetics Medical University of Varna Varna Bulgaria
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
IVEX Lab Akadeemia 15 Tallinn Estonia
National Centre for Biomolecular Research Masaryk University Brno Czech Republic
Program for Hematology Immunology BMT and Cell therapy St Marina University Hospital Varna Bulgaria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22019233
- 003
- CZ-PrNML
- 005
- 20220804135444.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/stmcls/sxab004 $2 doi
- 035 __
- $a (PubMed)35511867
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Giallongo, Sebastiano $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 245 10
- $a Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs / $c S. Giallongo, D. Řeháková, T. Biagini, O. Lo Re, P. Raina, G. Lochmanová, Z. Zdráhal, I. Resnick, P. Pata, I. Pata, M. Mistrík, JP. de Magalhães, T. Mazza, I. Koutná, M. Vinciguerra
- 520 9_
- $a DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a DNA $7 D004247
- 650 _2
- $a oprava DNA $7 D004260
- 650 _2
- $a endoteliální buňky $x metabolismus $7 D042783
- 650 12
- $a histony $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a indukované pluripotentní kmenové buňky $x metabolismus $7 D057026
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a protein XRCC1 $x genetika $x metabolismus $7 D000076105
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Řeháková, Daniela $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Biagini, Tommaso $u Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- 700 1_
- $a Lo Re, Oriana $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- 700 1_
- $a Raina, Priyanka $u Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- 700 1_
- $a Lochmanová, Gabriela $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Zdráhal, Zbyněk $u Central European Institute of Technology, Masaryk University, Brno, Czech Republic $u National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Resnick, Igor $u Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria $u Program for Hematology, Immunology, BMT and Cell therapy, St. Marina University Hospital, Varna, Bulgaria $u Department of Medical Genetics, Medical University of Varna, Varna, Bulgaria
- 700 1_
- $a Pata, Pille $u Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia $u IVEX Lab, Akadeemia 15, Tallinn, Estonia
- 700 1_
- $a Pata, Illar $u Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- 700 1_
- $a Mistrík, Martin $u Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- 700 1_
- $a de Magalhães, João Pedro $u Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- 700 1_
- $a Mazza, Tommaso $u Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- 700 1_
- $a Koutná, Irena $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Vinciguerra, Manlio $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $u Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna (RIMUV), Varna, Bulgaria
- 773 0_
- $w MED00004436 $t Stem cells (Dayton, Ohio) $x 1549-4918 $g Roč. 40, č. 1 (2022), s. 35-48
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35511867 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804135438 $b ABA008
- 999 __
- $a ok $b bmc $g 1822713 $s 1170476
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 40 $c 1 $d 35-48 $e 20220303 $i 1549-4918 $m Stem cells $n Stem Cells $x MED00004436
- GRA __
- $a 208375/Z/17/Z $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20220720