Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader

C. Gaubitz, X. Liu, J. Pajak, NP. Stone, JA. Hayes, G. Demo, BA. Kelch

. 2022 ; 11 (-) : . [pub] 20220218

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019375

Grantová podpora
R01 GM127776 NIGMS NIH HHS - United States

Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019375
003      
CZ-PrNML
005      
20220804135614.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.74175 $2 doi
035    __
$a (PubMed)35179493
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Gaubitz, Christl $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States $1 https://orcid.org/0000000260479282
245    10
$a Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader / $c C. Gaubitz, X. Liu, J. Pajak, NP. Stone, JA. Hayes, G. Demo, BA. Kelch
520    9_
$a Sliding clamps are ring-shaped protein complexes that are integral to the DNA replication machinery of all life. Sliding clamps are opened and installed onto DNA by clamp loader AAA+ ATPase complexes. However, how a clamp loader opens and closes the sliding clamp around DNA is still unknown. Here, we describe structures of the Saccharomyces cerevisiae clamp loader Replication Factor C (RFC) bound to its cognate sliding clamp Proliferating Cell Nuclear Antigen (PCNA) en route to successful loading. RFC first binds to PCNA in a dynamic, closed conformation that blocks both ATPase activity and DNA binding. RFC then opens the PCNA ring through a large-scale 'crab-claw' expansion of both RFC and PCNA that explains how RFC prefers initial binding of PCNA over DNA. Next, the open RFC:PCNA complex binds DNA and interrogates the primer-template junction using a surprising base-flipping mechanism. Our structures indicate that initial PCNA opening and subsequent closure around DNA do not require ATP hydrolysis, but are driven by binding energy. ATP hydrolysis, which is necessary for RFC release, is triggered by interactions with both PCNA and DNA, explaining RFC's switch-like ATPase activity. Our work reveals how a AAA+ machine undergoes dramatic conformational changes for achieving binding preference and substrate remodeling.
650    _2
$a ATPázy spojené s různými buněčnými aktivitami $x metabolismus $7 D000074183
650    _2
$a adenosintrifosfatasy $x metabolismus $7 D000251
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a elektronová kryomikroskopie $7 D020285
650    _2
$a DNA $x metabolismus $7 D004247
650    12
$a replikace DNA $7 D004261
650    _2
$a DNA-dependentní DNA-polymerasy $x metabolismus $7 D004259
650    _2
$a proliferační antigen buněčného jádra $x metabolismus $7 D018809
650    _2
$a replikační protein C $x chemie $x genetika $x metabolismus $7 D051818
650    12
$a Saccharomyces cerevisiae $x genetika $7 D012441
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Liu, Xingchen $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States $1 https://orcid.org/0000000290891761
700    1_
$a Pajak, Joshua $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States $1 https://orcid.org/0000000157810870
700    1_
$a Stone, Nicholas P $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States $1 https://orcid.org/0000000258690329
700    1_
$a Hayes, Janelle A $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States
700    1_
$a Demo, Gabriel $u RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester MA & Central European Institute of Technology, Masaryk University, Brno, Czech Republic
700    1_
$a Kelch, Brian A $u Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, United States $1 https://orcid.org/0000000213696989
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 11, č. - (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35179493 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135608 $b ABA008
999    __
$a ok $b bmc $g 1822816 $s 1170618
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 11 $c - $e 20220218 $i 2050-084X $m eLife $n eLife $x MED00188753
GRA    __
$a R01 GM127776 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...