Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study

S. Böttcher, R. Engelmann, G. Grigore, P. Fernandez, J. Caetano, J. Flores-Montero, VHJ. van der Velden, M. Novakova, J. Philippé, M. Ritgen, L. Burgos, Q. Lecrevisse, S. Lange, T. Kalina, J. Verde Velasco, R. Fluxa Rodriguez, JJM. van Dongen,...

. 2022 ; 6 (3) : 976-992. [pub] 20220208

Language English Country United States

Document type Journal Article, Multicenter Study, Research Support, Non-U.S. Gov't

Reproducible expert-independent flow-cytometric criteria for the differential diagnoses between mature B-cell neoplasms are lacking. We developed an algorithm-driven classification for these lymphomas by flow cytometry and compared it to the WHO gold standard diagnosis. Overall, 662 samples from 662 patients representing 9 disease categories were analyzed at 9 laboratories using the previously published EuroFlow 5-tube-8-color B-cell chronic lymphoproliferative disease antibody panel. Expression levels of all 26 markers from the panel were plotted by B-cell entity to construct a univariate, fully standardized diagnostic reference library. For multivariate data analysis, we subsequently used canonical correlation analysis of 176 training cases to project the multidimensional space of all 26 immunophenotypic parameters into 36 2-dimensional plots for each possible pairwise differential diagnosis. Diagnostic boundaries were fitted according to the distribution of the immunophenotypes of a given differential diagnosis. A diagnostic algorithm based on these projections was developed and subsequently validated using 486 independent cases. Negative predictive values exceeding 92.1% were observed for all disease categories except for follicular lymphoma. Particularly high positive predictive values were returned in chronic lymphocytic leukemia (99.1%), hairy cell leukemia (97.2%), follicular lymphoma (97.2%), and mantle cell lymphoma (95.4%). Burkitt and CD10+ diffuse large B-cell lymphomas were difficult to distinguish by the algorithm. A similar ambiguity was observed between marginal zone, lymphoplasmacytic, and CD10- diffuse large B-cell lymphomas. The specificity of the approach exceeded 98% for all entities. The univariate immunophenotypic library and the multivariate expert-independent diagnostic algorithm might contribute to increased reproducibility of future diagnostics in mature B-cell neoplasms.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019388
003      
CZ-PrNML
005      
20250108120131.0
007      
ta
008      
220720s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1182/bloodadvances.2021005725 $2 doi
035    __
$a (PubMed)34814179
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Böttcher, Sebastian, $d 1971- $u Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical School, Rostock, Germany $1 https://orcid.org/000000023603761X $7 xx0327357
245    10
$a Expert-independent classification of mature B-cell neoplasms using standardized flow cytometry: a multicentric study / $c S. Böttcher, R. Engelmann, G. Grigore, P. Fernandez, J. Caetano, J. Flores-Montero, VHJ. van der Velden, M. Novakova, J. Philippé, M. Ritgen, L. Burgos, Q. Lecrevisse, S. Lange, T. Kalina, J. Verde Velasco, R. Fluxa Rodriguez, JJM. van Dongen, CE. Pedreira, A. Orfao
520    9_
$a Reproducible expert-independent flow-cytometric criteria for the differential diagnoses between mature B-cell neoplasms are lacking. We developed an algorithm-driven classification for these lymphomas by flow cytometry and compared it to the WHO gold standard diagnosis. Overall, 662 samples from 662 patients representing 9 disease categories were analyzed at 9 laboratories using the previously published EuroFlow 5-tube-8-color B-cell chronic lymphoproliferative disease antibody panel. Expression levels of all 26 markers from the panel were plotted by B-cell entity to construct a univariate, fully standardized diagnostic reference library. For multivariate data analysis, we subsequently used canonical correlation analysis of 176 training cases to project the multidimensional space of all 26 immunophenotypic parameters into 36 2-dimensional plots for each possible pairwise differential diagnosis. Diagnostic boundaries were fitted according to the distribution of the immunophenotypes of a given differential diagnosis. A diagnostic algorithm based on these projections was developed and subsequently validated using 486 independent cases. Negative predictive values exceeding 92.1% were observed for all disease categories except for follicular lymphoma. Particularly high positive predictive values were returned in chronic lymphocytic leukemia (99.1%), hairy cell leukemia (97.2%), follicular lymphoma (97.2%), and mantle cell lymphoma (95.4%). Burkitt and CD10+ diffuse large B-cell lymphomas were difficult to distinguish by the algorithm. A similar ambiguity was observed between marginal zone, lymphoplasmacytic, and CD10- diffuse large B-cell lymphomas. The specificity of the approach exceeded 98% for all entities. The univariate immunophenotypic library and the multivariate expert-independent diagnostic algorithm might contribute to increased reproducibility of future diagnostics in mature B-cell neoplasms.
650    _2
$a dospělí $7 D000328
650    _2
$a průtoková cytometrie $x metody $7 D005434
650    _2
$a lidé $7 D006801
650    _2
$a imunofenotypizace $7 D016130
650    12
$a folikulární lymfom $x diagnóza $7 D008224
650    12
$a difúzní velkobuněčný B-lymfom $7 D016403
650    _2
$a reprodukovatelnost výsledků $7 D015203
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Engelmann, Robby $u Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical School, Rostock, Germany $1 https://orcid.org/0000000210483638
700    1_
$a Grigore, Georgiana $u Cytognos SL, Salamanca, Spain
700    1_
$a Fernandez, Paula $u FACS/Stem Cell Laboratory, Kantonsspital Aarau AG, Aarau, Switzerland
700    1_
$a Caetano, Joana $u Secção de Citometria de Fluxo, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal $1 https://orcid.org/0000000175099066
700    1_
$a Flores-Montero, Juan $u Clinical and Translational Research Program, Cancer Research Center (IBMCC-CSIC/USAL-IBSAL), University of Salamanca, Salamanca, Spain $u Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain $u Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain $1 https://orcid.org/0000000211194387
700    1_
$a van der Velden, Vincent H J $u Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
700    1_
$a Novakova, Michaela $u CLIP - Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
700    1_
$a Philippé, Jan $u Department of Diagnostic Sciences, Ghent University, Ghent, Belgium $1 https://orcid.org/0000000348575746
700    1_
$a Ritgen, Matthias $u Department of Internal Medicine II, University of Schleswig-Holstein, Kiel, Germany
700    1_
$a Burgos, Leire $u Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC CB16/12/00369, Pamplona, Spain $1 https://orcid.org/0000000309982496
700    1_
$a Lecrevisse, Quentin $u Cytognos SL, Salamanca, Spain $u Clinical and Translational Research Program, Cancer Research Center (IBMCC-CSIC/USAL-IBSAL), University of Salamanca, Salamanca, Spain $u Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain $u Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain $1 https://orcid.org/0000000187155846
700    1_
$a Lange, Sandra $u Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical School, Rostock, Germany
700    1_
$a Kalina, Tomas $u CLIP - Department of Pediatric Hematology and Oncology, Charles University and University Hospital Motol, Prague, Czech Republic $1 https://orcid.org/0000000344752872 $7 xx0060125
700    1_
$a Verde Velasco, Javier $u Cytognos SL, Salamanca, Spain
700    1_
$a Fluxa Rodriguez, Rafael $u Cytognos SL, Salamanca, Spain
700    1_
$a van Dongen, Jacques J M $u Department of Immunology, Leiden University Medical Center, Leiden, Netherlands; and $1 https://orcid.org/0000000236507087
700    1_
$a Pedreira, Carlos E $u Systems and Computing Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
700    1_
$a Orfao, Alberto $u Clinical and Translational Research Program, Cancer Research Center (IBMCC-CSIC/USAL-IBSAL), University of Salamanca, Salamanca, Spain $u Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain $u Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
773    0_
$w MED00194912 $t Blood advances $x 2473-9537 $g Roč. 6, č. 3 (2022), s. 976-992
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34814179 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20250108120126 $b ABA008
999    __
$a ok $b bmc $g 1822824 $s 1170631
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 6 $c 3 $d 976-992 $e 20220208 $i 2473-9537 $m Blood advances $n Blood Adv $x MED00194912
LZP    __
$a Pubmed-20220720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...