-
Je něco špatně v tomto záznamu ?
Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck
A. Salehi, L. Wang, PJ. Coates, L. Norberg Spaak, X. Gu, N. Sgaramella, K. Nylander
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2003-01-01 do 2023-12-31
Nursing & Allied Health Database (ProQuest)
od 2003-01-01 do 2023-12-31
Health & Medicine (ProQuest)
od 2003-01-01 do 2023-12-31
- MeSH
- dlaždicobuněčné karcinomy hlavy a krku genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- nádory hlavy a krku * genetika MeSH
- proteomika MeSH
- rab proteiny vázající GTP genetika MeSH
- spinocelulární karcinom * genetika MeSH
- transkriptom genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. METHODS: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. RESULTS: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. CONCLUSIONS: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024261
- 003
- CZ-PrNML
- 005
- 20221031101143.0
- 007
- ta
- 008
- 221017s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2022.105991 $2 doi
- 035 __
- $a (PubMed)36007290
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Salehi, Amir $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- 245 10
- $a Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck / $c A. Salehi, L. Wang, PJ. Coates, L. Norberg Spaak, X. Gu, N. Sgaramella, K. Nylander
- 520 9_
- $a BACKGROUND: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. METHODS: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. RESULTS: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. CONCLUSIONS: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
- 650 12
- $a spinocelulární karcinom $x genetika $7 D002294
- 650 12
- $a nádory hlavy a krku $x genetika $7 D006258
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a proteomika $7 D040901
- 650 _2
- $a messenger RNA $x genetika $7 D012333
- 650 _2
- $a dlaždicobuněčné karcinomy hlavy a krku $x genetika $7 D000077195
- 650 _2
- $a transkriptom $x genetika $7 D059467
- 650 _2
- $a rab proteiny vázající GTP $x genetika $7 D020691
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wang, Lixiao $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- 700 1_
- $a Coates, Philip J $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 656 53, Czech Republic
- 700 1_
- $a Norberg Spaak, Lena $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- 700 1_
- $a Gu, Xiaolian $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- 700 1_
- $a Sgaramella, Nicola $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
- 700 1_
- $a Nylander, Karin $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden. Electronic address: karin.nylander@umu.se
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 149, č. - (2022), s. 105991
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36007290 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031101140 $b ABA008
- 999 __
- $a ok $b bmc $g 1854150 $s 1175551
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 149 $c - $d 105991 $e 20220818 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $a Pubmed-20221017