Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck

A. Salehi, L. Wang, PJ. Coates, L. Norberg Spaak, X. Gu, N. Sgaramella, K. Nylander

. 2022 ; 149 (-) : 105991. [pub] 20220818

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024261

BACKGROUND: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. METHODS: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. RESULTS: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. CONCLUSIONS: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024261
003      
CZ-PrNML
005      
20221031101143.0
007      
ta
008      
221017s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2022.105991 $2 doi
035    __
$a (PubMed)36007290
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Salehi, Amir $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
245    10
$a Reiterative modeling of combined transcriptomic and proteomic features refines and improves the prediction of early recurrence in squamous cell carcinoma of head and neck / $c A. Salehi, L. Wang, PJ. Coates, L. Norberg Spaak, X. Gu, N. Sgaramella, K. Nylander
520    9_
$a BACKGROUND: Patients with squamous cell carcinoma of the head and neck (SCCHN) have a high-risk of recurrence. We aimed to develop machine learning methods to identify transcriptomic and proteomic features that provide accurate classification models for predicting risk of early recurrence in SCCHN patients. METHODS: Clinical, genomic, transcriptomic and proteomic features distinguishing recurrence risk were examined in SCCHN patients from The Cancer Genome Atlas (TCGA). Recurrence within one year after treatment was classified as high-risk and no recurrence as low-risk. RESULTS: No significant differences in individual clinicopathological characteristics, mutation profiles or mRNA expression patterns were seen between the groups using conventional statistical analysis. Using the machine learning algorithm, extreme gradient boosting (XGBoost), ten proteins (RAD50, 4E-BP1, MYH11, MAP2K1, BECN1, NF2, RAB25, ERRFI1, KDR, SERPINE1) and five mRNAs (PLAUR, DKK1, AXIN2, ANG and VEGFA) made the greatest contribution to classification. These features were used to build improved models in XGBoost, achieving the best discrimination performance when combining transcriptomic and proteomic data, providing an accuracy of 0.939 and an Area Under the ROC Curve (AUC) of 0.951. CONCLUSIONS: This study highlights machine learning to identify transcriptomic and proteomic factors that play important roles in predicting risk of recurrence in patients with SCCHN and to develop such models by iterative cycles to enhance their accuracy, thereby aiding the introduction of personalized treatment regimens.
650    12
$a spinocelulární karcinom $x genetika $7 D002294
650    12
$a nádory hlavy a krku $x genetika $7 D006258
650    _2
$a lidé $7 D006801
650    _2
$a proteomika $7 D040901
650    _2
$a messenger RNA $x genetika $7 D012333
650    _2
$a dlaždicobuněčné karcinomy hlavy a krku $x genetika $7 D000077195
650    _2
$a transkriptom $x genetika $7 D059467
650    _2
$a rab proteiny vázající GTP $x genetika $7 D020691
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Wang, Lixiao $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
700    1_
$a Coates, Philip J $u Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 656 53, Czech Republic
700    1_
$a Norberg Spaak, Lena $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
700    1_
$a Gu, Xiaolian $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
700    1_
$a Sgaramella, Nicola $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
700    1_
$a Nylander, Karin $u Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden. Electronic address: karin.nylander@umu.se
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 149, č. - (2022), s. 105991
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36007290 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031101140 $b ABA008
999    __
$a ok $b bmc $g 1854150 $s 1175551
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 149 $c - $d 105991 $e 20220818 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...