• Je něco špatně v tomto záznamu ?

EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data

M. Lalit, P. Tomancak, F. Jug

. 2022 ; 81 (-) : 102523. [pub] 20220703

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024301

Automatic detection and segmentation of biological objects in 2D and 3D image data is central for countless biomedical research questions to be answered. While many existing computational methods are used to reduce manual labeling time, there is still a huge demand for further quality improvements of automated solutions. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality results, but their utility to biomedical data is largely unexplored. Here we introduce EmbedSeg, an embedding-based instance segmentation method designed to segment instances of desired objects visible in 2D or 3D biomedical image data. We apply our method to four 2D and seven 3D benchmark datasets, showing that we either match or outperform existing state-of-the-art methods. While the 2D datasets and three of the 3D datasets are well known, we have created the required training data for four new 3D datasets, which we make publicly available online. Next to performance, also usability is important for a method to be useful. Hence, EmbedSeg is fully open source (https://github.com/juglab/EmbedSeg), offering (i) tutorial notebooks to train EmbedSeg models and use them to segment object instances in new data, and (ii) a napari plugin that can also be used for training and segmentation without requiring any programming experience. We believe that this renders EmbedSeg accessible to virtually everyone who requires high-quality instance segmentations in 2D or 3D biomedical image data.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024301
003      
CZ-PrNML
005      
20221031100436.0
007      
ta
008      
221017s2022 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.media.2022.102523 $2 doi
035    __
$a (PubMed)35926335
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Lalit, Manan $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany
245    10
$a EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data / $c M. Lalit, P. Tomancak, F. Jug
520    9_
$a Automatic detection and segmentation of biological objects in 2D and 3D image data is central for countless biomedical research questions to be answered. While many existing computational methods are used to reduce manual labeling time, there is still a huge demand for further quality improvements of automated solutions. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality results, but their utility to biomedical data is largely unexplored. Here we introduce EmbedSeg, an embedding-based instance segmentation method designed to segment instances of desired objects visible in 2D or 3D biomedical image data. We apply our method to four 2D and seven 3D benchmark datasets, showing that we either match or outperform existing state-of-the-art methods. While the 2D datasets and three of the 3D datasets are well known, we have created the required training data for four new 3D datasets, which we make publicly available online. Next to performance, also usability is important for a method to be useful. Hence, EmbedSeg is fully open source (https://github.com/juglab/EmbedSeg), offering (i) tutorial notebooks to train EmbedSeg models and use them to segment object instances in new data, and (ii) a napari plugin that can also be used for training and segmentation without requiring any programming experience. We believe that this renders EmbedSeg accessible to virtually everyone who requires high-quality instance segmentations in 2D or 3D biomedical image data.
650    12
$a algoritmy $7 D000465
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    12
$a mikroskopie $x metody $7 D008853
655    _2
$a časopisecké články $7 D016428
700    1_
$a Tomancak, Pavel $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany; IT4Innovations, VŠB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
700    1_
$a Jug, Florian $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany; Fondazione Human Technopole, Milano, Italy. Electronic address: florian.jug@fht.org
773    0_
$w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 81, č. - (2022), s. 102523
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35926335 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100434 $b ABA008
999    __
$a ok $b bmc $g 1854175 $s 1175591
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 81 $c - $d 102523 $e 20220703 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...