-
Je něco špatně v tomto záznamu ?
EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data
M. Lalit, P. Tomancak, F. Jug
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- algoritmy * MeSH
- lidé MeSH
- mikroskopie * metody MeSH
- počítačové zpracování obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Automatic detection and segmentation of biological objects in 2D and 3D image data is central for countless biomedical research questions to be answered. While many existing computational methods are used to reduce manual labeling time, there is still a huge demand for further quality improvements of automated solutions. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality results, but their utility to biomedical data is largely unexplored. Here we introduce EmbedSeg, an embedding-based instance segmentation method designed to segment instances of desired objects visible in 2D or 3D biomedical image data. We apply our method to four 2D and seven 3D benchmark datasets, showing that we either match or outperform existing state-of-the-art methods. While the 2D datasets and three of the 3D datasets are well known, we have created the required training data for four new 3D datasets, which we make publicly available online. Next to performance, also usability is important for a method to be useful. Hence, EmbedSeg is fully open source (https://github.com/juglab/EmbedSeg), offering (i) tutorial notebooks to train EmbedSeg models and use them to segment object instances in new data, and (ii) a napari plugin that can also be used for training and segmentation without requiring any programming experience. We believe that this renders EmbedSeg accessible to virtually everyone who requires high-quality instance segmentations in 2D or 3D biomedical image data.
Center for Systems Biology Dresden Germany
Fondazione Human Technopole Milano Italy
IT4Innovations VŠB Technical University of Ostrava Ostrava Poruba Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024301
- 003
- CZ-PrNML
- 005
- 20221031100436.0
- 007
- ta
- 008
- 221017s2022 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.media.2022.102523 $2 doi
- 035 __
- $a (PubMed)35926335
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Lalit, Manan $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany
- 245 10
- $a EmbedSeg: Embedding-based Instance Segmentation for Biomedical Microscopy Data / $c M. Lalit, P. Tomancak, F. Jug
- 520 9_
- $a Automatic detection and segmentation of biological objects in 2D and 3D image data is central for countless biomedical research questions to be answered. While many existing computational methods are used to reduce manual labeling time, there is still a huge demand for further quality improvements of automated solutions. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality results, but their utility to biomedical data is largely unexplored. Here we introduce EmbedSeg, an embedding-based instance segmentation method designed to segment instances of desired objects visible in 2D or 3D biomedical image data. We apply our method to four 2D and seven 3D benchmark datasets, showing that we either match or outperform existing state-of-the-art methods. While the 2D datasets and three of the 3D datasets are well known, we have created the required training data for four new 3D datasets, which we make publicly available online. Next to performance, also usability is important for a method to be useful. Hence, EmbedSeg is fully open source (https://github.com/juglab/EmbedSeg), offering (i) tutorial notebooks to train EmbedSeg models and use them to segment object instances in new data, and (ii) a napari plugin that can also be used for training and segmentation without requiring any programming experience. We believe that this renders EmbedSeg accessible to virtually everyone who requires high-quality instance segmentations in 2D or 3D biomedical image data.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 12
- $a mikroskopie $x metody $7 D008853
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Tomancak, Pavel $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany; IT4Innovations, VŠB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- 700 1_
- $a Jug, Florian $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden (CSBD), Germany; Fondazione Human Technopole, Milano, Italy. Electronic address: florian.jug@fht.org
- 773 0_
- $w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 81, č. - (2022), s. 102523
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35926335 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031100434 $b ABA008
- 999 __
- $a ok $b bmc $g 1854175 $s 1175591
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 81 $c - $d 102523 $e 20220703 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
- LZP __
- $a Pubmed-20221017