Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A normative model of peripersonal space encoding as performing impact prediction

Z. Straka, JP. Noel, M. Hoffmann

. 2022 ; 18 (9) : e1010464. [pub] 20220914

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024418

Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024418
003      
CZ-PrNML
005      
20221031101354.0
007      
ta
008      
221017s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pcbi.1010464 $2 doi
035    __
$a (PubMed)36103520
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Straka, Zdenek $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000227881667
245    12
$a A normative model of peripersonal space encoding as performing impact prediction / $c Z. Straka, JP. Noel, M. Hoffmann
520    9_
$a Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
650    _2
$a Bayesova věta $7 D001499
650    _2
$a neurony $7 D009474
650    12
$a osobní prostor $7 D010550
650    _2
$a vnímání prostoru $x fyziologie $7 D013028
650    _2
$a hmat $x fyziologie $7 D014110
650    12
$a hmatová percepce $x fyziologie $7 D055698
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Noel, Jean-Paul $u Center for Neural Science, New York University, New York City, New York, United States of America $1 https://orcid.org/0000000152973363
700    1_
$a Hoffmann, Matej $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000181373412
773    0_
$w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 18, č. 9 (2022), s. e1010464
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36103520 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031101352 $b ABA008
999    __
$a ok $b bmc $g 1854244 $s 1175708
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 18 $c 9 $d e1010464 $e 20220914 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...