-
Je něco špatně v tomto záznamu ?
A normative model of peripersonal space encoding as performing impact prediction
Z. Straka, JP. Noel, M. Hoffmann
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 2005
Public Library of Science (PLoS)
od 2005
PubMed Central
od 2005
Europe PubMed Central
od 2005
ProQuest Central
od 2005-06-01
Open Access Digital Library
od 2005-06-01
Open Access Digital Library
od 2005-01-01
Open Access Digital Library
od 2005-01-01
Medline Complete (EBSCOhost)
od 2005-06-01
Health & Medicine (ProQuest)
od 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
od 2005
- MeSH
- Bayesova věta MeSH
- hmat fyziologie MeSH
- hmatová percepce * fyziologie MeSH
- neurony MeSH
- osobní prostor * MeSH
- vnímání prostoru fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024418
- 003
- CZ-PrNML
- 005
- 20221031101354.0
- 007
- ta
- 008
- 221017s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1010464 $2 doi
- 035 __
- $a (PubMed)36103520
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Straka, Zdenek $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000227881667
- 245 12
- $a A normative model of peripersonal space encoding as performing impact prediction / $c Z. Straka, JP. Noel, M. Hoffmann
- 520 9_
- $a Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.
- 650 _2
- $a Bayesova věta $7 D001499
- 650 _2
- $a neurony $7 D009474
- 650 12
- $a osobní prostor $7 D010550
- 650 _2
- $a vnímání prostoru $x fyziologie $7 D013028
- 650 _2
- $a hmat $x fyziologie $7 D014110
- 650 12
- $a hmatová percepce $x fyziologie $7 D055698
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Noel, Jean-Paul $u Center for Neural Science, New York University, New York City, New York, United States of America $1 https://orcid.org/0000000152973363
- 700 1_
- $a Hoffmann, Matej $u Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000181373412
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 18, č. 9 (2022), s. e1010464
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36103520 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031101352 $b ABA008
- 999 __
- $a ok $b bmc $g 1854244 $s 1175708
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 18 $c 9 $d e1010464 $e 20220914 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20221017