Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

QRS detection and classification in Holter ECG data in one inference step

A. Ivora, I. Viscor, P. Nejedly, R. Smisek, Z. Koscova, V. Bulkova, J. Halamek, P. Jurak, F. Plesinger

. 2022 ; 12 (1) : 12641. [pub] 20220725

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22025168

While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22025168
003      
CZ-PrNML
005      
20221031100221.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-022-16517-4 $2 doi
035    __
$a (PubMed)35879331
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ivora, Adam $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
245    10
$a QRS detection and classification in Holter ECG data in one inference step / $c A. Ivora, I. Viscor, P. Nejedly, R. Smisek, Z. Koscova, V. Bulkova, J. Halamek, P. Jurak, F. Plesinger
520    9_
$a While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.
650    _2
$a algoritmy $7 D000465
650    _2
$a artefakty $7 D016477
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a elektrokardiografie ambulantní $x metody $7 D015716
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování signálu $7 D012815
650    12
$a komorové extrasystoly $7 D018879
650    12
$a nositelná elektronika $7 D000076251
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Viscor, Ivo $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Nejedly, Petr $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Smisek, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Koscova, Zuzana $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Bulkova, Veronika $u Medical Data Transfer, s.r.o., Brno, Czech Republic
700    1_
$a Halamek, Josef $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Jurak, Pavel $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
700    1_
$a Plesinger, Filip $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. fplesinger@isibrno.cz
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 12641
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35879331 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100218 $b ABA008
999    __
$a ok $b bmc $g 1854729 $s 1176458
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 12 $c 1 $d 12641 $e 20220725 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...