-
Je něco špatně v tomto záznamu ?
QRS detection and classification in Holter ECG data in one inference step
A. Ivora, I. Viscor, P. Nejedly, R. Smisek, Z. Koscova, V. Bulkova, J. Halamek, P. Jurak, F. Plesinger
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- algoritmy MeSH
- artefakty MeSH
- elektrokardiografie ambulantní metody MeSH
- elektrokardiografie metody MeSH
- komorové extrasystoly * MeSH
- lidé MeSH
- nositelná elektronika * MeSH
- počítačové zpracování signálu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22025168
- 003
- CZ-PrNML
- 005
- 20221031100221.0
- 007
- ta
- 008
- 221017s2022 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-022-16517-4 $2 doi
- 035 __
- $a (PubMed)35879331
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Ivora, Adam $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 245 10
- $a QRS detection and classification in Holter ECG data in one inference step / $c A. Ivora, I. Viscor, P. Nejedly, R. Smisek, Z. Koscova, V. Bulkova, J. Halamek, P. Jurak, F. Plesinger
- 520 9_
- $a While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a artefakty $7 D016477
- 650 _2
- $a elektrokardiografie $x metody $7 D004562
- 650 _2
- $a elektrokardiografie ambulantní $x metody $7 D015716
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 12
- $a komorové extrasystoly $7 D018879
- 650 12
- $a nositelná elektronika $7 D000076251
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Viscor, Ivo $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Nejedly, Petr $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Smisek, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Koscova, Zuzana $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Bulkova, Veronika $u Medical Data Transfer, s.r.o., Brno, Czech Republic
- 700 1_
- $a Halamek, Josef $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Jurak, Pavel $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
- 700 1_
- $a Plesinger, Filip $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. fplesinger@isibrno.cz
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 12, č. 1 (2022), s. 12641
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35879331 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031100218 $b ABA008
- 999 __
- $a ok $b bmc $g 1854729 $s 1176458
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 12 $c 1 $d 12641 $e 20220725 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20221017