• Something wrong with this record ?

Field and magic angle spinning frequency dependence of proton resonances in rotating solids

K. Xue, R. Sarkar, Z. Tošner, B. Reif

. 2022 ; 130-131 (-) : 47-61. [pub] 20220507

Language English Country England, Great Britain

Document type Journal Article, Review

Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22025442
003      
CZ-PrNML
005      
20221031100147.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.pnmrs.2022.04.001 $2 doi
035    __
$a (PubMed)36113917
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Xue, Kai $u Max Planck Institute for Biophysical Chemistry, Department of NMR Based Structural Biology, Am Fassberg. 11, Goettingen, Germany
245    10
$a Field and magic angle spinning frequency dependence of proton resonances in rotating solids / $c K. Xue, R. Sarkar, Z. Tošner, B. Reif
520    9_
$a Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.
650    _2
$a deuterium $x chemie $7 D003903
650    12
$a protonová terapie $7 D061766
650    12
$a protony $7 D011522
650    _2
$a spektrin $x chemie $7 D013049
650    _2
$a src homologní domény $7 D018909
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Sarkar, Riddhiman $u Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
700    1_
$a Tošner, Zdeněk $u Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842 Praha 2, Czech Republic
700    1_
$a Reif, Bernd $u Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany. Electronic address: riddhiman.sarkar@helmholtz-muenchen.de
773    0_
$w MED00003931 $t Progress in nuclear magnetic resonance spectroscopy $x 1873-3301 $g Roč. 130-131, č. - (2022), s. 47-61
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36113917 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100145 $b ABA008
999    __
$a ok $b bmc $g 1854918 $s 1176732
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 130-131 $c - $d 47-61 $e 20220507 $i 1873-3301 $m Progress in nuclear magnetic resonance spectroscopy $n Prog Nucl Magn Reson Spectrosc $x MED00003931
LZP    __
$a Pubmed-20221017

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...