• Something wrong with this record ?

EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin

M. Schürz, J. Danmayr, M. Jaritsch, E. Klinglmayr, HM. Benirschke, CT. Matea, P. Zimmerebner, J. Rauter, M. Wolf, FG. Gomes, Z. Kratochvil, Z. Heger, A. Miller, T. Heuser, V. Stanojlovic, J. Kiefer, T. Plank, L. Johnson, M. Himly, C. Blöchl, CG....

. 2022 ; 11 (12) : e12282. [pub] -

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032312
003      
CZ-PrNML
005      
20230131151658.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jev2.12282 $2 doi
035    __
$a (PubMed)36437554
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Schürz, Melanie $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria $1 https://orcid.org/0000000301703261
245    10
$a EVAnalyzer: High content imaging for rigorous characterisation of single extracellular vesicles using standard laboratory equipment and a new open-source ImageJ/Fiji plugin / $c M. Schürz, J. Danmayr, M. Jaritsch, E. Klinglmayr, HM. Benirschke, CT. Matea, P. Zimmerebner, J. Rauter, M. Wolf, FG. Gomes, Z. Kratochvil, Z. Heger, A. Miller, T. Heuser, V. Stanojlovic, J. Kiefer, T. Plank, L. Johnson, M. Himly, C. Blöchl, CG. Huber, M. Hintersteiner, N. Meisner-Kober
520    9_
$a Extracellular vesicle (EV) research increasingly demands for quantitative characterisation at the single vesicle level to address heterogeneity and complexity of EV subpopulations. Emerging, commercialised technologies for single EV analysis based on, for example, imaging flow cytometry or imaging after capture on chips generally require dedicated instrumentation and proprietary software not readily accessible to every lab. This limits their implementation for routine EV characterisation in the rapidly growing EV field. We and others have shown that single vesicles can be detected as light diffraction limited fluorescent spots using standard confocal and widefield fluorescence microscopes. Advancing this simple strategy into a process for routine EV quantitation, we developed 'EVAnalyzer', an ImageJ/Fiji (Fiji is just ImageJ) plugin for automated, quantitative single vesicle analysis from imaging data. Using EVAnalyzer, we established a robust protocol for capture, (immuno-)labelling and fluorescent imaging of EVs. To exemplify the application scope, the process was optimised and systematically tested for (i) quantification of EV subpopulations, (ii) validation of EV labelling reagents, (iii) in situ determination of antibody specificity, sensitivity and species cross-reactivity for EV markers and (iv) optimisation of genetic EV engineering. Additionally, we show that the process can be applied to synthetic nanoparticles, allowing to determine siRNA encapsulation efficiencies of lipid-based nanoparticles (LNPs) and protein loading of SiO2 nanoparticles. EVAnalyzer further provides a pipeline for automated quantification of cell uptake at the single cell-single vesicle level, thereby enabling high content EV cell uptake assays and plate-based screens. Notably, the entire procedure from sample preparation to the final data output is entirely based on standard reagents, materials, laboratory equipment and open access software. In summary, we show that EVAnalyzer enables rigorous characterisation of EVs with generally accessible tools. Since we further provide the plugin as open-source code, we expect EVAnalyzer to not only be a resource of immediate impact, but an open innovation platform for the EV and nanoparticle research communities.
650    12
$a oxid křemičitý $x metabolismus $7 D012822
650    12
$a extracelulární vezikuly $x metabolismus $7 D000067128
650    _2
$a průtoková cytometrie $x metody $7 D005434
650    _2
$a diagnostické zobrazování $7 D003952
650    _2
$a biologické markery $x metabolismus $7 D015415
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Danmayr, Joachim $u Department of Informatics and Mathematics, Fernuniversität Hagen, Hagen, Germany
700    1_
$a Jaritsch, Maria $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Klinglmayr, Eva $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Benirschke, Heloisa Melo $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Matea, Cristian-Tudor $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Zimmerebner, Patrick $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Rauter, Jakob $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Wolf, Martin $u Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria $1 https://orcid.org/0000000247958086
700    1_
$a Gomes, Fausto Gueths $u Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
700    1_
$a Kratochvil, Zdenek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
700    1_
$a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
700    1_
$a Miller, Andrew $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic $u Veterinary Research Institute, Brno, Czech Republic $u KP Therapeutics (Europe) sro., Brno, Czech Republic
700    1_
$a Heuser, Thomas $u Vienna Biocentre Core Facilities, Vienna, Austria
700    1_
$a Stanojlovic, Vesna $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Kiefer, Jana $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Plank, Tanja $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Johnson, Litty $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Himly, Martin $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Blöchl, Constantin $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Huber, Christian G $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
700    1_
$a Hintersteiner, Martin $u EvoBiotiX SA, Lugano, Switzerland
700    1_
$a Meisner-Kober, Nicole $u Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
773    0_
$w MED00188113 $t Journal of extracellular vesicles $x 2001-3078 $g Roč. 11, č. 12 (2022), s. e12282
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36437554 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151654 $b ABA008
999    __
$a ok $b bmc $g 1891204 $s 1183647
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 11 $c 12 $d e12282 $e - $i 2001-3078 $m Journal of extracellular vesicles $n J Extracell Vesicles $x MED00188113
LZP    __
$a Pubmed-20230120

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...