Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Characterization of drug effects on cell cultures from phase-contrast microscopy images

D. Baručić, S. Kaushik, J. Kybic, J. Stanková, P. Džubák, M. Hajdúch

. 2022 ; 151 (Pt A) : 106171. [pub] 20221014

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032353

In this work, we classify chemotherapeutic agents (topoisomerase inhibitors) based on their effect on U-2 OS cells. We use phase-contrast microscopy images, which are faster and easier to obtain than fluorescence images and support live cell imaging. We use a convolutional neural network (CNN) trained end-to-end directly on the input images without requiring for manual segmentations or any other auxiliary data. Our method can distinguish between tested cytotoxic drugs with an accuracy of 98%, provided that their mechanism of action differs, outperforming previous work. The results are even better when substance-specific concentrations are used. We show the benefit of sharing the extracted features over all classes (drugs). Finally, a 2D visualization of these features reveals clusters, which correspond well to known class labels, suggesting the possible use of our methodology for drug discovery application in analyzing new, unseen drugs.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032353
003      
CZ-PrNML
005      
20230131151556.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2022.106171 $2 doi
035    __
$a (PubMed)36306582
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Baručić, Denis $u Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic. Electronic address: barucden@fel.cvut.cz
245    10
$a Characterization of drug effects on cell cultures from phase-contrast microscopy images / $c D. Baručić, S. Kaushik, J. Kybic, J. Stanková, P. Džubák, M. Hajdúch
520    9_
$a In this work, we classify chemotherapeutic agents (topoisomerase inhibitors) based on their effect on U-2 OS cells. We use phase-contrast microscopy images, which are faster and easier to obtain than fluorescence images and support live cell imaging. We use a convolutional neural network (CNN) trained end-to-end directly on the input images without requiring for manual segmentations or any other auxiliary data. Our method can distinguish between tested cytotoxic drugs with an accuracy of 98%, provided that their mechanism of action differs, outperforming previous work. The results are even better when substance-specific concentrations are used. We show the benefit of sharing the extracted features over all classes (drugs). Finally, a 2D visualization of these features reveals clusters, which correspond well to known class labels, suggesting the possible use of our methodology for drug discovery application in analyzing new, unseen drugs.
650    _2
$a mikroskopie fázově kontrastní $7 D008858
650    12
$a neuronové sítě $7 D016571
650    12
$a buněčné kultury $7 D018929
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kaushik, Sumit $u Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic. Electronic address: kaushsum@fel.cvut.cz
700    1_
$a Kybic, Jan $u Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic. Electronic address: kybic@fel.cvut.cz
700    1_
$a Stanková, Jarmila $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
700    1_
$a Džubák, Petr $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
700    1_
$a Hajdúch, Marián $u Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 151, č. Pt A (2022), s. 106171
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36306582 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151552 $b ABA008
999    __
$a ok $b bmc $g 1891233 $s 1183688
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 151 $c Pt A $d 106171 $e 20221014 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...