Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke

P. Cimflova, R. Golan, JM. Ospel, A. Sojoudi, C. Duszynski, I. Elebute, H. El-Hariri, S. Hossein Mousavi, LASM. Neto, N. Pinky, B. Beland, F. Bala, NR. Kashani, W. Hu, M. Joshi, W. Qiu, BK. Menon

. 2022 ; 64 (12) : 2245-2255. [pub] 20220524

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032511
E-zdroje Online Plný text

NLK ProQuest Central od 2002-01-01 do Před 1 rokem
CINAHL Plus with Full Text (EBSCOhost) od 2008-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2003-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest) od 2002-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-01-01 do Před 1 rokem

PURPOSE: CT angiography (CTA) is the imaging standard for large vessel occlusion (LVO) detection in patients with acute ischemic stroke. StrokeSENS LVO is an automated tool that utilizes a machine learning algorithm to identify anterior large vessel occlusions (LVO) on CTA. The aim of this study was to test the algorithm's performance in LVO detection in an independent dataset. METHODS: A total of 400 studies (217 LVO, 183 other/no occlusion) read by expert consensus were used for retrospective analysis. The LVO was defined as intracranial internal carotid artery (ICA) occlusion and M1 middle cerebral artery (MCA) occlusion. Software performance in detecting anterior LVO was evaluated using receiver operator characteristics (ROC) analysis, reporting area under the curve (AUC), sensitivity, and specificity. Subgroup analyses were performed to evaluate if performance in detecting LVO differed by subgroups, namely M1 MCA and ICA occlusion sites, and in data stratified by patient age, sex, and CTA acquisition characteristics (slice thickness, kilovoltage tube peak, and scanner manufacturer). RESULTS: AUC, sensitivity, and specificity overall were as follows: 0.939, 0.894, and 0.874, respectively, in the full cohort; 0.927, 0.857, and 0.874, respectively, in the ICA occlusion cohort; 0.945, 0.914, and 0.874, respectively, in the M1 MCA occlusion cohort. Performance did not differ significantly by patient age, sex, or CTA acquisition characteristics. CONCLUSION: The StrokeSENS LVO machine learning algorithm detects anterior LVO with high accuracy from a range of scans in a large dataset.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032511
003      
CZ-PrNML
005      
20230131150816.0
007      
ta
008      
230120s2022 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00234-022-02978-x $2 doi
035    __
$a (PubMed)35606655
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Cimflova, Petra $u Department of Clinical Neurosciences and Radiology, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada. petracimflova@gmail.com $u Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic. petracimflova@gmail.com $1 https://orcid.org/000000018058383X
245    10
$a Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke / $c P. Cimflova, R. Golan, JM. Ospel, A. Sojoudi, C. Duszynski, I. Elebute, H. El-Hariri, S. Hossein Mousavi, LASM. Neto, N. Pinky, B. Beland, F. Bala, NR. Kashani, W. Hu, M. Joshi, W. Qiu, BK. Menon
520    9_
$a PURPOSE: CT angiography (CTA) is the imaging standard for large vessel occlusion (LVO) detection in patients with acute ischemic stroke. StrokeSENS LVO is an automated tool that utilizes a machine learning algorithm to identify anterior large vessel occlusions (LVO) on CTA. The aim of this study was to test the algorithm's performance in LVO detection in an independent dataset. METHODS: A total of 400 studies (217 LVO, 183 other/no occlusion) read by expert consensus were used for retrospective analysis. The LVO was defined as intracranial internal carotid artery (ICA) occlusion and M1 middle cerebral artery (MCA) occlusion. Software performance in detecting anterior LVO was evaluated using receiver operator characteristics (ROC) analysis, reporting area under the curve (AUC), sensitivity, and specificity. Subgroup analyses were performed to evaluate if performance in detecting LVO differed by subgroups, namely M1 MCA and ICA occlusion sites, and in data stratified by patient age, sex, and CTA acquisition characteristics (slice thickness, kilovoltage tube peak, and scanner manufacturer). RESULTS: AUC, sensitivity, and specificity overall were as follows: 0.939, 0.894, and 0.874, respectively, in the full cohort; 0.927, 0.857, and 0.874, respectively, in the ICA occlusion cohort; 0.945, 0.914, and 0.874, respectively, in the M1 MCA occlusion cohort. Performance did not differ significantly by patient age, sex, or CTA acquisition characteristics. CONCLUSION: The StrokeSENS LVO machine learning algorithm detects anterior LVO with high accuracy from a range of scans in a large dataset.
650    _2
$a lidé $7 D006801
650    _2
$a retrospektivní studie $7 D012189
650    12
$a ischemická cévní mozková příhoda $7 D000083242
650    12
$a cévní mozková příhoda $x diagnostické zobrazování $7 D020521
650    _2
$a infarkt arteria cerebri media $x diagnostické zobrazování $7 D020244
650    _2
$a CT angiografie $x metody $7 D000072226
650    12
$a arteriální okluzní nemoci $7 D001157
650    _2
$a software $7 D012984
650    _2
$a strojové učení $7 D000069550
650    12
$a ischemie mozku $7 D002545
655    _2
$a časopisecké články $7 D016428
700    1_
$a Golan, Rotem $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada $1 https://orcid.org/0000000257569156
700    1_
$a Ospel, Johanna M $u Department of Radiology, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $u Department of Radiology, University Hospital of Basel, Basel, Switzerland $1 https://orcid.org/0000000300296764
700    1_
$a Sojoudi, Alireza $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada $1 https://orcid.org/0000000227278091
700    1_
$a Duszynski, Chris $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada $1 https://orcid.org/0000000150503608
700    1_
$a Elebute, Ibukun $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada
700    1_
$a El-Hariri, Houssam $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada $1 https://orcid.org/0000000208413796
700    1_
$a Hossein Mousavi, Seyed $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada
700    1_
$a Neto, Luis A Souto Maior $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada $1 https://orcid.org/0000000344376176
700    1_
$a Pinky, Najratun $u Circle Neurovascular Imaging Inc., Calgary, AB, Canada
700    1_
$a Beland, Benjamin $u Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $1 https://orcid.org/0000000295741412
700    1_
$a Bala, Fouzi $u Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $1 https://orcid.org/0000000167482081
700    1_
$a Kashani, Nima R $u Department of Radiology, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $1 https://orcid.org/000000029752784X
700    1_
$a Hu, William $u Department of Radiology, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada
700    1_
$a Joshi, Manish $u Department of Radiology, Cumming School of Medicine, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada
700    1_
$a Qiu, Wu $u Department of Clinical Neurosciences and Radiology, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $1 https://orcid.org/0000000178278270
700    1_
$a Menon, Bijoy K $u Department of Clinical Neurosciences and Radiology, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, 1403 29th Street NW, Calgary, AB, T2N 2T9, Canada $u Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada $1 https://orcid.org/000000023466496X
773    0_
$w MED00003503 $t Neuroradiology $x 1432-1920 $g Roč. 64, č. 12 (2022), s. 2245-2255
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35606655 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131150812 $b ABA008
999    __
$a ok $b bmc $g 1891334 $s 1183846
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 64 $c 12 $d 2245-2255 $e 20220524 $i 1432-1920 $m Neuroradiology $n Neuroradiology $x MED00003503
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...