-
Je něco špatně v tomto záznamu ?
Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase
PD. Anindita, M. Halbeisen, D. Řeha, R. Tuma, Z. Franta
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2021
Free Medical Journals
od 2008 do Před 1 rokem
Freely Accessible Science Journals
od 1905 do Před 1 rokem
PubMed Central
od 2005
Europe PubMed Central
od 2005 do Před 1 rokem
Open Access Digital Library
od 1905-10-01
Open Access Digital Library
od 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
od 1905
- MeSH
- adenosintrifosfát metabolismus MeSH
- adenosintrifosfatasy * metabolismus MeSH
- dvouvláknová RNA metabolismus MeSH
- fosfáty metabolismus MeSH
- jednovláknová DNA * metabolismus MeSH
- lidé MeSH
- RNA-helikasy * metabolismus MeSH
- virové nestrukturální proteiny * metabolismus MeSH
- viry klíšťové encefalitidy * enzymologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22033181
- 003
- CZ-PrNML
- 005
- 20230131150640.0
- 007
- ta
- 008
- 230120s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jbc.2022.102383 $2 doi
- 035 __
- $a (PubMed)35987382
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Anindita, Paulina Duhita $u Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 245 10
- $a Mechanistic insight into the RNA-stimulated ATPase activity of tick-borne encephalitis virus helicase / $c PD. Anindita, M. Halbeisen, D. Řeha, R. Tuma, Z. Franta
- 520 9_
- $a The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a adenosintrifosfatasy $x metabolismus $7 D000251
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 12
- $a jednovláknová DNA $x metabolismus $7 D004277
- 650 12
- $a viry klíšťové encefalitidy $x enzymologie $x metabolismus $7 D004669
- 650 _2
- $a fosfáty $x metabolismus $7 D010710
- 650 12
- $a RNA-helikasy $x metabolismus $7 D020365
- 650 _2
- $a dvouvláknová RNA $x metabolismus $7 D012330
- 650 12
- $a virové nestrukturální proteiny $x metabolismus $7 D017361
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Halbeisen, Marco $u Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 700 1_
- $a Řeha, David $u Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 700 1_
- $a Tuma, Roman $u Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 700 1_
- $a Franta, Zdenek $u Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Electronic address: zfranta@prf.jcu.cz
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 298, č. 10 (2022), s. 102383
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35987382 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131150636 $b ABA008
- 999 __
- $a ok $b bmc $g 1891759 $s 1184516
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 298 $c 10 $d 102383 $e 20220817 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20230120