Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Next-Generation Morphometry for pathomics-data mining in histopathology

DL. Hölscher, N. Bouteldja, M. Joodaki, ML. Russo, YC. Lan, AV. Sadr, M. Cheng, V. Tesar, SV. Stillfried, BM. Klinkhammer, J. Barratt, J. Floege, ISD. Roberts, R. Coppo, IG. Costa, RD. Bülow, P. Boor

. 2023 ; 14 (1) : 470. [pub] 20230128

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Pathology diagnostics relies on the assessment of morphology by trained experts, which remains subjective and qualitative. Here we developed a framework for large-scale histomorphometry (FLASH) performing deep learning-based semantic segmentation and subsequent large-scale extraction of interpretable, quantitative, morphometric features in non-tumour kidney histology. We use two internal and three external, multi-centre cohorts to analyse over 1000 kidney biopsies and nephrectomies. By associating morphometric features with clinical parameters, we confirm previous concepts and reveal unexpected relations. We show that the extracted features are independent predictors of long-term clinical outcomes in IgA-nephropathy. We introduce single-structure morphometric analysis by applying techniques from single-cell transcriptomics, identifying distinct glomerular populations and morphometric phenotypes along a trajectory of disease progression. Our study provides a concept for Next-generation Morphometry (NGM), enabling comprehensive quantitative pathology data mining, i.e., pathomics.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23004496
003      
CZ-PrNML
005      
20241009144625.0
007      
ta
008      
230418s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-023-36173-0 $2 doi
035    __
$a (PubMed)36709324
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hölscher, David L $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany $1 https://orcid.org/0000000185950694
245    10
$a Next-Generation Morphometry for pathomics-data mining in histopathology / $c DL. Hölscher, N. Bouteldja, M. Joodaki, ML. Russo, YC. Lan, AV. Sadr, M. Cheng, V. Tesar, SV. Stillfried, BM. Klinkhammer, J. Barratt, J. Floege, ISD. Roberts, R. Coppo, IG. Costa, RD. Bülow, P. Boor
520    9_
$a Pathology diagnostics relies on the assessment of morphology by trained experts, which remains subjective and qualitative. Here we developed a framework for large-scale histomorphometry (FLASH) performing deep learning-based semantic segmentation and subsequent large-scale extraction of interpretable, quantitative, morphometric features in non-tumour kidney histology. We use two internal and three external, multi-centre cohorts to analyse over 1000 kidney biopsies and nephrectomies. By associating morphometric features with clinical parameters, we confirm previous concepts and reveal unexpected relations. We show that the extracted features are independent predictors of long-term clinical outcomes in IgA-nephropathy. We introduce single-structure morphometric analysis by applying techniques from single-cell transcriptomics, identifying distinct glomerular populations and morphometric phenotypes along a trajectory of disease progression. Our study provides a concept for Next-generation Morphometry (NGM), enabling comprehensive quantitative pathology data mining, i.e., pathomics.
650    12
$a ledviny $x patologie $7 D007668
650    12
$a glomerulus $x patologie $7 D007678
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bouteldja, Nassim $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Joodaki, Mehdi $u Institute for Computational Genomics, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Russo, Maria L $u Fondazione Ricerca Molinette, Torino, Italy
700    1_
$a Lan, Yu-Chia $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Sadr, Alireza Vafaei $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Cheng, Mingbo $u Institute for Computational Genomics, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Tesar, Vladimir $u Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000169820689 $7 jn20000402349
700    1_
$a Stillfried, Saskia V $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Klinkhammer, Barbara M $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany $1 https://orcid.org/0000000215667129
700    1_
$a Barratt, Jonathan $u John Walls Renal Unit, University Hospital of Leicester National Health Service Trust, Leicester, United Kingdom $u Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
700    1_
$a Floege, Jürgen $u Department of Nephrology and Immunology, RWTH Aachen University Clinic, Aachen, Germany
700    1_
$a Roberts, Ian S D $u Department of Cellular Pathology, Oxford University Hospitals National Health Services Foundation Trust, Oxford, United Kingdom
700    1_
$a Coppo, Rosanna $u Fondazione Ricerca Molinette, Torino, Italy $u Regina Margherita Children's University Hospital, Torino, Italy
700    1_
$a Costa, Ivan G $u Institute for Computational Genomics, RWTH Aachen University Clinic, Aachen, Germany $1 https://orcid.org/0000000328908697
700    1_
$a Bülow, Roman D $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany $1 https://orcid.org/0000000285277353
700    1_
$a Boor, Peter, $d 1979- $u Institute of Pathology, RWTH Aachen University Clinic, Aachen, Germany. pboor@ukaachen.de $u Department of Nephrology and Immunology, RWTH Aachen University Clinic, Aachen, Germany. pboor@ukaachen.de $1 https://orcid.org/0000000199214284 $7 xx0323557
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 14, č. 1 (2023), s. 470
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36709324 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230418 $b ABA008
991    __
$a 20241009144620 $b ABA008
999    __
$a ok $b bmc $g 1924915 $s 1190705
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 14 $c 1 $d 470 $e 20230128 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
LZP    __
$a Pubmed-20230418

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...