-
Je něco špatně v tomto záznamu ?
AccuCalc: A Python Package for Accuracy Calculation in GWAS
J. Biová, N. Dietz, YO. Chan, T. Joshi, K. Bilyeu, M. Škrabišová
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2010
Free Medical Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
ProQuest Central
od 2010-03-01
Open Access Digital Library
od 2010-01-01
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
36672864
DOI
10.3390/genes14010123
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie * metody MeSH
- fenotyp MeSH
- genom MeSH
- genomika * metody MeSH
- mutace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The genome-wide association study (GWAS) is a popular genomic approach that identifies genomic regions associated with a phenotype and, thus, aims to discover causative mutations (CM) in the genes underlying the phenotype. However, GWAS discoveries are limited by many factors and typically identify associated genomic regions without the further ability to compare the viability of candidate genes and actual CMs. Therefore, the current methodology is limited to CM identification. In our recent work, we presented a novel approach to an empowered "GWAS to Genes" strategy that we named Synthetic phenotype to causative mutation (SP2CM). We established this strategy to identify CMs in soybean genes and developed a web-based tool for accuracy calculation (AccuTool) for a reference panel of soybean accessions. Here, we describe our further development of the tool that extends its utilization for other species and named it AccuCalc. We enhanced the tool for the analysis of datasets with a low-frequency distribution of a rare phenotype by automated formatting of a synthetic phenotype and added another accuracy-based GWAS evaluation criterion to the accuracy calculation. We designed AccuCalc as a Python package for GWAS data analysis for any user-defined species-independent variant calling format (vcf) or HapMap format (hmp) as input data. AccuCalc saves analysis outputs in user-friendly tab-delimited formats and also offers visualization of the GWAS results as Manhattan plots accentuated by accuracy. Under the hood of Python, AccuCalc is publicly available and, thus, can be used conveniently for the SP2CM strategy utilization for every species.
Christopher S Bond Life Sciences Center University of Missouri Columbia MO 65212 USA
Division of Plant Sciences University of Missouri Columbia MO 65201 USA
MU Data Science and Informatics Institute University of Missouri Columbia MO 65212 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23004700
- 003
- CZ-PrNML
- 005
- 20230425171653.0
- 007
- ta
- 008
- 230418s2023 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes14010123 $2 doi
- 035 __
- $a (PubMed)36672864
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Biová, Jana $u Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, 78371 Olomouc, Czech Republic $1 https://orcid.org/0000000305908061
- 245 10
- $a AccuCalc: A Python Package for Accuracy Calculation in GWAS / $c J. Biová, N. Dietz, YO. Chan, T. Joshi, K. Bilyeu, M. Škrabišová
- 520 9_
- $a The genome-wide association study (GWAS) is a popular genomic approach that identifies genomic regions associated with a phenotype and, thus, aims to discover causative mutations (CM) in the genes underlying the phenotype. However, GWAS discoveries are limited by many factors and typically identify associated genomic regions without the further ability to compare the viability of candidate genes and actual CMs. Therefore, the current methodology is limited to CM identification. In our recent work, we presented a novel approach to an empowered "GWAS to Genes" strategy that we named Synthetic phenotype to causative mutation (SP2CM). We established this strategy to identify CMs in soybean genes and developed a web-based tool for accuracy calculation (AccuTool) for a reference panel of soybean accessions. Here, we describe our further development of the tool that extends its utilization for other species and named it AccuCalc. We enhanced the tool for the analysis of datasets with a low-frequency distribution of a rare phenotype by automated formatting of a synthetic phenotype and added another accuracy-based GWAS evaluation criterion to the accuracy calculation. We designed AccuCalc as a Python package for GWAS data analysis for any user-defined species-independent variant calling format (vcf) or HapMap format (hmp) as input data. AccuCalc saves analysis outputs in user-friendly tab-delimited formats and also offers visualization of the GWAS results as Manhattan plots accentuated by accuracy. Under the hood of Python, AccuCalc is publicly available and, thus, can be used conveniently for the SP2CM strategy utilization for every species.
- 650 12
- $a celogenomová asociační studie $x metody $7 D055106
- 650 12
- $a genomika $x metody $7 D023281
- 650 _2
- $a genom $7 D016678
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a mutace $7 D009154
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dietz, Nicholas $u Division of Plant Sciences, University of Missouri, Columbia, MO 65201, USA $1 https://orcid.org/0000000175368166
- 700 1_
- $a Chan, Yen On $u Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA $u MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA
- 700 1_
- $a Joshi, Trupti $u Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA $u MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA $u Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA $u Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65212, USA $1 https://orcid.org/0000000189444924
- 700 1_
- $a Bilyeu, Kristin $u Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO 65211, USA $1 https://orcid.org/0000000241414790
- 700 1_
- $a Škrabišová, Mária $u Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, 78371 Olomouc, Czech Republic $1 https://orcid.org/0000000328791062
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 14, č. 1 (2023)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36672864 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230418 $b ABA008
- 991 __
- $a 20230425171649 $b ABA008
- 999 __
- $a ok $b bmc $g 1925032 $s 1190909
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 14 $c 1 $e 20230101 $i 2073-4425 $m Genes $n Genes $x MED00174652
- LZP __
- $a Pubmed-20230418