-
Something wrong with this record ?
EMG signals for finger movement classification based on short-term fourier transform and deep learning
Ivana Kralikova, Branko Babusiak, Lubomir Kralik
Language English Country Czech Republic
Document type Review, Research Support, Non-U.S. Gov't
- MeSH
- Biomedical Technology methods instrumentation MeSH
- Biomedical Research MeSH
- Electromyography * methods instrumentation MeSH
- Humans MeSH
- Signal Processing, Computer-Assisted instrumentation MeSH
- Fingers diagnostic imaging innervation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data representations are investigated: different window segmentation lengths and reduction of the measured channels. The overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains more than 90% by reducing channels from four to three.
References provided by Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23006620
- 003
- CZ-PrNML
- 005
- 20230926115023.0
- 007
- ta
- 008
- 230518s2021 xr ad f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.14311/CTJ.2021.1.02 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Králiková, Ivana $7 xx0301872 $u Department of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
- 245 10
- $a EMG signals for finger movement classification based on short-term fourier transform and deep learning / $c Ivana Kralikova, Branko Babusiak, Lubomir Kralik
- 504 __
- $a Literatura
- 520 9_
- $a An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data representations are investigated: different window segmentation lengths and reduction of the measured channels. The overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains more than 90% by reducing channels from four to three.
- 650 17
- $a elektromyografie $x metody $x přístrojové vybavení $7 D004576 $2 czmesh
- 650 _7
- $a prsty ruky $x diagnostické zobrazování $x inervace $7 D005385 $2 czmesh
- 650 _7
- $a počítačové zpracování signálu $x přístrojové vybavení $7 D012815 $2 czmesh
- 650 _7
- $a biomedicínské technologie $x metody $x přístrojové vybavení $7 D020811 $2 czmesh
- 650 _7
- $a biomedicínský výzkum $7 D035843 $2 czmesh
- 650 _7
- $a lidé $7 D006801 $2 czmesh
- 655 _7
- $a přehledy $7 D016454 $2 czmesh
- 655 _7
- $a práce podpořená grantem $7 D013485 $2 czmesh
- 700 1_
- $a Babušiak, Branko, $d 1983- $7 mzk2007390332 $u Department of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia
- 700 1_
- $a Králik, Ľubomír $7 _AN117018 $u Faculty of Management Science and Informatics, University of Zilina, Zilina, Slovakia
- 773 0_
- $t Lékař a technika $x 0301-5491 $g Roč. 51, č. 1-4 (2021), s. 15-20 $w MED00011033
- 910 __
- $a ABA008 $b B 1367 $c 1071 b $y p $z 0
- 990 __
- $a 20230517141648 $b ABA008
- 991 __
- $a 20230926115020 $b ABA008
- 999 __
- $a ok $b bmc $g 1934177 $s 1192842
- BAS __
- $a 3
- BMC __
- $a 2021 $b 51 $c 1-4 $d 15-20 $i 0301-5491 $m Lékař a technika $n Lék. tech. $x MED00011033
- LZP __
- $c NLK193 $d 20230926 $a NLK 2023-16/kv