Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Artificial-Intelligence-Driven Algorithms for Predicting Response to Corticosteroid Treatment in Patients with Post-Acute COVID-19

V. Myska, S. Genzor, A. Mezina, R. Burget, J. Mizera, M. Stybnar, M. Kolarik, M. Sova, MK. Dutta

. 2023 ; 13 (10) : . [pub] 20230516

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23009761

Grantová podpora
NU22-A-105 Ministry of Health of the Czech Republic

Pulmonary fibrosis is one of the most severe long-term consequences of COVID-19. Corticosteroid treatment increases the chances of recovery; unfortunately, it can also have side effects. Therefore, we aimed to develop prediction models for a personalized selection of patients benefiting from corticotherapy. The experiment utilized various algorithms, including Logistic Regression, k-NN, Decision Tree, XGBoost, Random Forest, SVM, MLP, AdaBoost, and LGBM. In addition easily human-interpretable model is presented. All algorithms were trained on a dataset consisting of a total of 281 patients. Every patient conducted an examination at the start and three months after the post-COVID treatment. The examination comprised a physical examination, blood tests, functional lung tests, and an assessment of health state based on X-ray and HRCT. The Decision tree algorithm achieved balanced accuracy (BA) of 73.52%, ROC-AUC of 74.69%, and 71.70% F1 score. Other algorithms achieving high accuracy included Random Forest (BA 70.00%, ROC-AUC 70.62%, 67.92% F1 score) and AdaBoost (BA 70.37%, ROC-AUC 63.58%, 70.18% F1 score). The experiments prove that information obtained during the initiation of the post-COVID-19 treatment can be used to predict whether the patient will benefit from corticotherapy. The presented predictive models can be used by clinicians to make personalized treatment decisions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23009761
003      
CZ-PrNML
005      
20230725092218.0
007      
ta
008      
230707s2023 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/diagnostics13101755 $2 doi
035    __
$a (PubMed)37238239
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Myska, Vojtech $u Department of Telecommunications, Faculty of Electrical Engineering and Communications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic $1 https://orcid.org/0000000293642330
245    10
$a Artificial-Intelligence-Driven Algorithms for Predicting Response to Corticosteroid Treatment in Patients with Post-Acute COVID-19 / $c V. Myska, S. Genzor, A. Mezina, R. Burget, J. Mizera, M. Stybnar, M. Kolarik, M. Sova, MK. Dutta
520    9_
$a Pulmonary fibrosis is one of the most severe long-term consequences of COVID-19. Corticosteroid treatment increases the chances of recovery; unfortunately, it can also have side effects. Therefore, we aimed to develop prediction models for a personalized selection of patients benefiting from corticotherapy. The experiment utilized various algorithms, including Logistic Regression, k-NN, Decision Tree, XGBoost, Random Forest, SVM, MLP, AdaBoost, and LGBM. In addition easily human-interpretable model is presented. All algorithms were trained on a dataset consisting of a total of 281 patients. Every patient conducted an examination at the start and three months after the post-COVID treatment. The examination comprised a physical examination, blood tests, functional lung tests, and an assessment of health state based on X-ray and HRCT. The Decision tree algorithm achieved balanced accuracy (BA) of 73.52%, ROC-AUC of 74.69%, and 71.70% F1 score. Other algorithms achieving high accuracy included Random Forest (BA 70.00%, ROC-AUC 70.62%, 67.92% F1 score) and AdaBoost (BA 70.37%, ROC-AUC 63.58%, 70.18% F1 score). The experiments prove that information obtained during the initiation of the post-COVID-19 treatment can be used to predict whether the patient will benefit from corticotherapy. The presented predictive models can be used by clinicians to make personalized treatment decisions.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Genzor, Samuel $u Department of Respiratory Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000267305832
700    1_
$a Mezina, Anzhelika $u Department of Telecommunications, Faculty of Electrical Engineering and Communications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic $1 https://orcid.org/0000000189656193
700    1_
$a Burget, Radim, $u Department of Telecommunications, Faculty of Electrical Engineering and Communications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic $1 https://orcid.org/0000000318495390 $d 1982- $7 jo2015889385
700    1_
$a Mizera, Jan $u Department of Respiratory Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000289524243 $7 xx0238803
700    1_
$a Stybnar, Michal $u Czech National e-Health Center, University Hospital Olomouc, I. P. Pavlova 6, 779 00 Olomouc, Czech Republic $1 https://orcid.org/0000000240994535
700    1_
$a Kolarik, Martin $u Department of Telecommunications, Faculty of Electrical Engineering and Communications, Brno University of Technology, Technicka 12, 616 00 Brno, Czech Republic $1 https://orcid.org/0000000161586162
700    1_
$a Sova, Milan $u Department of Respiratory Diseases and Tuberculosis, University Hospital Brno and Faculty of Medicine and Dentistry, Masaryk University Brno, Jihlavska 340/20, 625 00 Brno, Czech Republic $1 https://orcid.org/0000000285427841
700    1_
$a Dutta, Malay Kishore $u Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Jankipuram Vistar, Lucknow 226021, India $1 https://orcid.org/000000032462737X
773    0_
$w MED00195450 $t Diagnostics (Basel, Switzerland) $x 2075-4418 $g Roč. 13, č. 10 (2023)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37238239 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230707 $b ABA008
991    __
$a 20230725092215 $b ABA008
999    __
$a ok $b bmc $g 1958492 $s 1196025
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2023 $b 13 $c 10 $e 20230516 $i 2075-4418 $m Diagnostics $n Diagnostics $x MED00195450
GRA    __
$a NU22-A-105 $p Ministry of Health of the Czech Republic
LZP    __
$a Pubmed-20230707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...