• Je něco špatně v tomto záznamu ?

RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays

M. Port, JF. Barquinero, D. Endesfelder, J. Moquet, U. Oestreicher, G. Terzoudi, F. Trompier, A. Vral, Y. Abe, L. Ainsbury, L. Alkebsi, SA. Amundson, C. Badie, A. Baeyens, AS. Balajee, K. Balázs, S. Barnard, C. Bassinet, LA. Beaton-Green, C....

. 2023 ; 199 (6) : 535-555. [pub] 2023Jun01

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc23011128

Grantová podpora
U19 AI067773 NIAID NIH HHS - United States

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.

Belgian Nuclear Research Center SCK CEN Mol Belgium

Bundesamt für Strahlenschutz Oberschleißheim Germany

Bundeswehr Institute of Radiobiology Munich Germany

CEA Saclay Gif sur Yvette Cedex France

Columbia University Irving Medical Center Center for Radiological Research New York New York

Cytogenetic Biodosimetry Laboratory Oak Ridge Institute for Science and Education Oak Ridge Tennessee

Dalat Nuclear Research Institute Radiation Technlogy and Biotechnology Center Dalat City Vietnam

Department of Radiation Biology and Protection Nagasaki University Japan

Department of Radiation Life Sciences Fukushima Medical University School of Medicine Fukushima Japan

Department of Radiation Measurement and Dose Assessment National Institute of Radiological Sciences National Institutes for Quantum Science and Technology Chiba Japan

Department of Radiobiology Singapore Nuclear Research and Safety Initiative National University of Singapore Singapore

Department of Safety and Radiation Protection Forschungszentrum Jülich Jülich Germany

Genevolution Porcheville France

Ghent University Radiobiology Research Unit Gent Belgium

Health Canada Ottawa Canada

Hospital General Universitario Gregorio Marañón Laboratorio de dosimetría biológica Madrid Spain

Institut de Radioprotection et de Surete Nucleaire Fontenay aux Roses France

Institut de Recherche Biomédicale des Armées Bretigny Sur Orge France

Institute of Nuclear Chemistry and Technology Warsaw Poland

Institute of Nuclear Physics Polish Academy of Sciences Krakow Poland

Institute of Radiation Emergency Medicine Hirosaki University Hirosaki Japan

Instituto Superior Técnico Campus Tecnológico e Nuclear Lisbon Portugal

Italian National Agency for New Technologies Energy and Sustainable Economic Development Rome Italy

Laboratori Nazionali di Legnaro Istituto Nazionale di Fisica Nucleare Legnaro Italy

Laboratory of Biological Dosimetry Korea Institute of Radiological and Medical Sciences Seoul Republic of Korea

Medical University of Gdansk Department of Physics and Biophysics Gdansk Poland

National Centre for Scientific Research Demokritos Health Physics Radiobiology and Cytogenetics Laboratory Agia Paraskevi Greece

National Centre of Radiobiology and Radiation Protection Sofia Bulgaria

National Institute of Public Health Radiation Hygiene Laboratory Bucharest Romania

Naval Dosimetry Center Bethesda Maryland

Paris Lodron University of Salzburg Department of Environment and Biodiversity 5020 Salzburg Austria

Radiation Cytogenetics Laboratory S P Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science Kharkiv Ukraine

Radiation Dosimetry Laboratory Oklahoma State University Stillwater Oklahoma

Radiation Medicine Unit Department of Radiobiology and Radiohygiene National Public Health Centre Budapest Hungary

Radiation Protection Centre Vilnius Lithuania

Ruðer Boškovic Institute Division of Physical Chemistry Zagreb Croatia

Serbian Institute of Occupational Health Belgrade Serbia

Servicio de Protección Radiológica Laboratorio de Dosimetría Biológica Valencia Spain

Stockholm University Stockholm Sweden

TENMAK Nuclear Energy Research Institute Technology Development and Nuclear Research Department Türkey

UK Health Security Agency and Office for Health Improvement and Disparities Cytogenetics and Pathology Group Oxfordshire England

UK Health Security Agency Radiation Chemical and Environmental Hazards Division Oxfordshire United Kingdom

Universidad de Sevilla Departamento de Biología Celular Sevilla Spain

Università Degli Studi di Palermo Dipartimento di Fisica e Chimica Emilio Segrè Palermo Italy

Universitat Autònoma de Barcelona Barcelona Spain

University of Arizona Center for Applied Nanobioscience and Medicine Phoenix Arizona

University of Defense Faculty of Military Health Sciences Hradec Králové Czech Republic

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23011128
003      
CZ-PrNML
005      
20230801132825.0
007      
ta
008      
230718s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1667/RADE-22-00207.1 $2 doi
035    __
$a (PubMed)37310880
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Port, M $u Bundeswehr Institute of Radiobiology, Munich, Germany
245    10
$a RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays / $c M. Port, JF. Barquinero, D. Endesfelder, J. Moquet, U. Oestreicher, G. Terzoudi, F. Trompier, A. Vral, Y. Abe, L. Ainsbury, L. Alkebsi, SA. Amundson, C. Badie, A. Baeyens, AS. Balajee, K. Balázs, S. Barnard, C. Bassinet, LA. Beaton-Green, C. Beinke, L. Bobyk, P. Brochard, K. Brzoska, M. Bucher, B. Ciesielski, C. Cuceu, M. Discher, MC. D Oca, I. Domínguez, S. Doucha-Senf, A. Dumitrescu, PN. Duy, F. Finot, G. Garty, SA. Ghandhi, E. Gregoire, VST. Goh, I. Güçlü, L. Hadjiiska, R. Hargitai, R. Hristova, K. Ishii, E. Kis, M. Juniewicz, R. Kriehuber, J. Lacombe, Y. Lee, M. Lopez Riego, K. Lumniczky, TT. Mai, N. Maltar-Strmečki, M. Marrale, JS. Martinez, A. Marciniak, N. Maznyk, SWS. McKeever, PK. Meher, M. Milanova, T. Miura, O. Monteiro Gil, A. Montoro, M. Moreno Domene, A. Mrozik, R. Nakayama, G. O'Brien, D. Oskamp, P. Ostheim, J. Pajic, N. Pastor, C. Patrono, M. Pujol-Canadell, MJ. Prieto Rodriguez, M. Repin, A. Romanyukha, U. Rößler, L. Sabatier, A. Sakai, H. Scherthan, S. Schüle, KM. Seong, O. Sevriukova, S. Sholom, S. Sommer, Y. Suto, T. Sypko, T. Szatmári, M. Takahashi-Sugai, K. Takebayashi, A. Testa, I. Testard, A. Tichy, S. Triantopoulou, N. Tsuyama, M. Unverricht-Yeboah, M. Valente, O. Van Hoey, RC. Wilkins, A. Wojcik, M. Wojewodzka, L. Younghyun, D. Zafiropoulos, M. Abend
520    9_
$a Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
650    _2
$a retrospektivní studie $7 D012189
650    12
$a biotest $7 D001681
650    12
$a odběr vzorku krve $7 D001800
650    _2
$a cytokineze $7 D048749
650    _2
$a elektronová paramagnetická rezonance $7 D004578
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Barquinero, J-F $u Universitat Autònoma de Barcelona, Barcelona, Spain
700    1_
$a Endesfelder, D $u Bundesamt für Strahlenschutz, Oberschleißheim, Germany
700    1_
$a Moquet, J $u UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
700    1_
$a Oestreicher, U $u Bundesamt für Strahlenschutz, Oberschleißheim, Germany
700    1_
$a Terzoudi, G $u National Centre for Scientific Research "Demokritos", Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
700    1_
$a Trompier, F $u Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
700    1_
$a Vral, A $u Ghent University, Radiobiology Research Unit, Gent, Belgium
700    1_
$a Abe, Y $u Department of Radiation Biology and Protection, Nagasaki University, Japan
700    1_
$a Ainsbury, L $u UK Health Security Agency and Office for Health Improvement and Disparities, Cytogenetics and Pathology Group, Oxfordshire, England
700    1_
$a Alkebsi, L $u Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
700    1_
$a Amundson, S A $u Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
700    1_
$a Badie, C $u UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
700    1_
$a Baeyens, A $u Ghent University, Radiobiology Research Unit, Gent, Belgium
700    1_
$a Balajee, A S $u Cytogenetic Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
700    1_
$a Balázs, K $u Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
700    1_
$a Barnard, S $u UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
700    1_
$a Bassinet, C $u Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
700    1_
$a Beaton-Green, L A $u Health Canada, Ottawa, Canada
700    1_
$a Beinke, C $u Bundeswehr Institute of Radiobiology, Munich, Germany
700    1_
$a Bobyk, L $u Institut de Recherche Biomédicale des Armées (IRBA), Bretigny Sur Orge, France
700    1_
$a Brochard, P $u CEA-Saclay, Gif-sur-Yvette Cedex, France
700    1_
$a Brzoska, K $u Institute of Nuclear Chemistry and Technology, Warsaw, Poland
700    1_
$a Bucher, M $u Bundesamt für Strahlenschutz, Oberschleißheim, Germany
700    1_
$a Ciesielski, B $u Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
700    1_
$a Cuceu, C $u Genevolution, Porcheville, France
700    1_
$a Discher, M $u Paris-Lodron-University of Salzburg, Department of Environment and Biodiversity, 5020 Salzburg, Austria
700    1_
$a D Oca, M C $u Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica "Emilio Segrè," Palermo, Italy
700    1_
$a Domínguez, I $u Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
700    1_
$a Doucha-Senf, S $u Bundeswehr Institute of Radiobiology, Munich, Germany
700    1_
$a Dumitrescu, A $u National Institute of Public Health, Radiation Hygiene Laboratory, Bucharest, Romania
700    1_
$a Duy, P N $u Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
700    1_
$a Finot, F $u Genevolution, Porcheville, France
700    1_
$a Garty, G $u Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
700    1_
$a Ghandhi, S A $u Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
700    1_
$a Gregoire, E $u Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
700    1_
$a Goh, V S T $u Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore
700    1_
$a Güçlü, I $u TENMAK, Nuclear Energy Research Institute,Technology Development and Nuclear Research Department, Türkey
700    1_
$a Hadjiiska, L $u National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
700    1_
$a Hargitai, R $u Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
700    1_
$a Hristova, R $u National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
700    1_
$a Ishii, K $u Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
700    1_
$a Kis, E $u Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
700    1_
$a Juniewicz, M $u Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
700    1_
$a Kriehuber, R $u Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
700    1_
$a Lacombe, J $u University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
700    1_
$a Lee, Y $u Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
700    1_
$a Lopez Riego, M $u Stockholm University, Stockholm, Sweden
700    1_
$a Lumniczky, K $u Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
700    1_
$a Mai, T T $u Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
700    1_
$a Maltar-Strmečki, N $u Ruðer Boškovic Institute, Division of Physical Chemistry, Zagreb, Croatia
700    1_
$a Marrale, M $u Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica "Emilio Segrè," Palermo, Italy
700    1_
$a Martinez, J S $u Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
700    1_
$a Marciniak, A $u Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
700    1_
$a Maznyk, N $u Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
700    1_
$a McKeever, S W S $u Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
700    1_
$a Meher, P K $u Stockholm University, Stockholm, Sweden
700    1_
$a Milanova, M $u University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
700    1_
$a Miura, T $u Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
700    1_
$a Monteiro Gil, O $u Instituto Superior Técnico/Campus Tecnológico e Nuclear, Lisbon, Portugal
700    1_
$a Montoro, A $u Servicio de Protección Radiológica. Laboratorio de Dosimetría Biológica, Valencia, Spain
700    1_
$a Moreno Domene, M $u Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
700    1_
$a Mrozik, A $u Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
700    1_
$a Nakayama, R $u Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
700    1_
$a O'Brien, G $u UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
700    1_
$a Oskamp, D $u Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
700    1_
$a Ostheim, P $u Bundeswehr Institute of Radiobiology, Munich, Germany
700    1_
$a Pajic, J $u Serbian Institute of Occupational Health, Belgrade, Serbia
700    1_
$a Pastor, N $u Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
700    1_
$a Patrono, C $u Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
700    1_
$a Pujol-Canadell, M $u Universitat Autònoma de Barcelona, Barcelona, Spain
700    1_
$a Prieto Rodriguez, M J $u Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
700    1_
$a Repin, M $u Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
700    1_
$a Romanyukha, A $u Naval Dosimetry Center, Bethesda, Maryland
700    1_
$a Rößler, U $u Bundesamt für Strahlenschutz, Oberschleißheim, Germany
700    1_
$a Sabatier, L $u CEA-Saclay, Gif-sur-Yvette Cedex, France
700    1_
$a Sakai, A $u Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
700    1_
$a Scherthan, H $u Bundeswehr Institute of Radiobiology, Munich, Germany
700    1_
$a Schüle, S $u Bundeswehr Institute of Radiobiology, Munich, Germany
700    1_
$a Seong, K M $u Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
700    1_
$a Sevriukova, O $u Radiation Protection Centre, Vilnius, Lithuania
700    1_
$a Sholom, S $u Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
700    1_
$a Sommer, S $u Institute of Nuclear Chemistry and Technology, Warsaw, Poland
700    1_
$a Suto, Y $u Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
700    1_
$a Sypko, T $u Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
700    1_
$a Szatmári, T $u Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
700    1_
$a Takahashi-Sugai, M $u Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
700    1_
$a Takebayashi, K $u Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
700    1_
$a Testa, A $u Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
700    1_
$a Testard, I $u CEA-Saclay, Gif-sur-Yvette Cedex, France
700    1_
$a Tichy, A $u University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
700    1_
$a Triantopoulou, S $u National Centre for Scientific Research "Demokritos", Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
700    1_
$a Tsuyama, N $u Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
700    1_
$a Unverricht-Yeboah, M $u Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
700    1_
$a Valente, M $u CEA-Saclay, Gif-sur-Yvette Cedex, France
700    1_
$a Van Hoey, O $u Belgian Nuclear Research Center SCK CEN, Mol, Belgium
700    1_
$a Wilkins, R C $u Health Canada, Ottawa, Canada
700    1_
$a Wojcik, A $u Stockholm University, Stockholm, Sweden
700    1_
$a Wojewodzka, M $u Institute of Nuclear Chemistry and Technology, Warsaw, Poland
700    1_
$a Younghyun, Lee $u Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
700    1_
$a Zafiropoulos, D $u Laboratori Nazionali di Legnaro - Istituto Nazionale di Fisica Nucleare, Legnaro, Italy
700    1_
$a Abend, M $u Bundeswehr Institute of Radiobiology, Munich, Germany
773    0_
$w MED00010511 $t Radiation research $x 1938-5404 $g Roč. 199, č. 6 (2023), s. 535-555
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37310880 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132822 $b ABA008
999    __
$a ok $b bmc $g 1963494 $s 1197393
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 199 $c 6 $d 535-555 $e 2023Jun01 $i 1938-5404 $m Radiation research $n Radiat Res $x MED00010511
GRA    __
$a U19 AI067773 $p NIAID NIH HHS $2 United States
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...