• Je něco špatně v tomto záznamu ?

Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model

K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, BJ. Kim, R. McDonough, N. Singh, MD. Hill, M. Goyal, A. Demchuk, BK. Menon, W. Qiu

. 2023 ; 44 (6) : 641-648. [pub] 20230518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23011165

BACKGROUND AND PURPOSE: Identifying the presence and extent of intracranial thrombi is crucial in selecting patients with acute ischemic stroke for treatment. This article aims to develop an automated approach to quantify thrombus on NCCT and CTA in patients with stroke. MATERIALS AND METHODS: A total of 499 patients with large-vessel occlusion from the Safety and Efficacy of Nerinetide in Subjects Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-NA1) trial were included. All patients had thin-section NCCT and CTA images. Thrombi contoured manually were used as reference standard. A deep learning approach was developed to segment thrombi automatically. Of 499 patients, 263 and 66 patients were randomly selected to train and validate the deep learning model, respectively; the remaining 170 patients were independently used for testing. The deep learning model was quantitatively compared with the reference standard using the Dice coefficient and volumetric error. The proposed deep learning model was externally tested on 83 patients with and without large-vessel occlusion from another independent trial. RESULTS: The developed deep learning approach obtained a Dice coefficient of 70.7% (interquartile range, 58.0%-77.8%) in the internal cohort. The predicted thrombi length and volume were correlated with those of expert-contoured thrombi (r = 0.88 and 0.87, respectively; P < .001). When the derived deep learning model was applied to the external data set, the model obtained similar results in patients with large-vessel occlusion regarding the Dice coefficient (66.8%; interquartile range, 58.5%-74.6%), thrombus length (r = 0.73), and volume (r = 0.80). The model also obtained a sensitivity of 94.12% (32/34) and a specificity of 97.96% (48/49) in classifying large-vessel occlusion versus non-large-vessel occlusion. CONCLUSIONS: The proposed deep learning method can reliably detect and measure thrombi on NCCT and CTA in patients with acute ischemic stroke.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23011165
003      
CZ-PrNML
005      
20230801132836.0
007      
ta
008      
230718s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.3174/ajnr.A7878 $2 doi
035    __
$a (PubMed)37202113
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zhu, K $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $u College of Electronic Engineering (K.Z.), Xi'an Shiyou University, Xi'an, Shaanxi, China $1 https://orcid.org/0000000293637304
245    10
$a Automated Segmentation of Intracranial Thrombus on NCCT and CTA in Patients with Acute Ischemic Stroke Using a Coarse-to-Fine Deep Learning Model / $c K. Zhu, F. Bala, J. Zhang, F. Benali, P. Cimflova, BJ. Kim, R. McDonough, N. Singh, MD. Hill, M. Goyal, A. Demchuk, BK. Menon, W. Qiu
520    9_
$a BACKGROUND AND PURPOSE: Identifying the presence and extent of intracranial thrombi is crucial in selecting patients with acute ischemic stroke for treatment. This article aims to develop an automated approach to quantify thrombus on NCCT and CTA in patients with stroke. MATERIALS AND METHODS: A total of 499 patients with large-vessel occlusion from the Safety and Efficacy of Nerinetide in Subjects Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-NA1) trial were included. All patients had thin-section NCCT and CTA images. Thrombi contoured manually were used as reference standard. A deep learning approach was developed to segment thrombi automatically. Of 499 patients, 263 and 66 patients were randomly selected to train and validate the deep learning model, respectively; the remaining 170 patients were independently used for testing. The deep learning model was quantitatively compared with the reference standard using the Dice coefficient and volumetric error. The proposed deep learning model was externally tested on 83 patients with and without large-vessel occlusion from another independent trial. RESULTS: The developed deep learning approach obtained a Dice coefficient of 70.7% (interquartile range, 58.0%-77.8%) in the internal cohort. The predicted thrombi length and volume were correlated with those of expert-contoured thrombi (r = 0.88 and 0.87, respectively; P < .001). When the derived deep learning model was applied to the external data set, the model obtained similar results in patients with large-vessel occlusion regarding the Dice coefficient (66.8%; interquartile range, 58.5%-74.6%), thrombus length (r = 0.73), and volume (r = 0.80). The model also obtained a sensitivity of 94.12% (32/34) and a specificity of 97.96% (48/49) in classifying large-vessel occlusion versus non-large-vessel occlusion. CONCLUSIONS: The proposed deep learning method can reliably detect and measure thrombi on NCCT and CTA in patients with acute ischemic stroke.
650    _2
$a lidé $7 D006801
650    12
$a ischemická cévní mozková příhoda $x diagnostické zobrazování $7 D000083242
650    12
$a deep learning $7 D000077321
650    12
$a cévní mozková příhoda $x diagnostické zobrazování $7 D020521
650    12
$a trombóza $7 D013927
650    12
$a intrakraniální trombóza $x diagnostické zobrazování $7 D020767
650    _2
$a CT angiografie $x metody $7 D000072226
650    12
$a ischemie mozku $x diagnostické zobrazování $7 D002545
655    _2
$a časopisecké články $7 D016428
700    1_
$a Bala, F $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/0000000167482081
700    1_
$a Zhang, J $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/0000000203306908
700    1_
$a Benali, F $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/0000000210431125
700    1_
$a Cimflova, P $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $u Department of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada $u St. Anne's University Hospital Brno and Faculty of Medicine (P.C.), Masaryk University, Brno, Czech Republic $1 https://orcid.org/000000018058383X
700    1_
$a Kim, B J $u Department of Neurology and Cerebrovascular Center (B.J.K.), Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea $1 https://orcid.org/0000000227193012
700    1_
$a McDonough, R $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $u Department of Diagnostic and Interventional Neuroradiology (R.M.), University Hospital Hamburg, Hamburg, Germany $1 https://orcid.org/0000000280604490
700    1_
$a Singh, N $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/0000000336470904
700    1_
$a Hill, M D $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $u Department of Community Health Sciences (M.D.H.) $u Department of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada $1 https://orcid.org/0000000262691543
700    1_
$a Goyal, M $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/0000000190602109
700    1_
$a Demchuk, A $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $u Department of Medicine, and Department of Radiology (P.C., M.D.H., A.D.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada $1 https://orcid.org/0000000249307789
700    1_
$a Menon, B K $u From the Department of Clinical Neurosciences and Hotchkiss Brain Institute (K.Z., F. Bala, J.Z., F. Benali, P.C., R.M., N.S., M.D.H., M.G., A.D., B.K.M.) $1 https://orcid.org/000000023466496X
700    1_
$a Qiu, W $u School of Life Science and Technology (W.Q.), Huazhong University of Science and Technology, Wuhan, Hubei, China qiu.wu.ch@gmail.com $1 https://orcid.org/0000000178278270
773    0_
$w MED00009116 $t AJNR. American journal of neuroradiology $x 1936-959X $g Roč. 44, č. 6 (2023), s. 641-648
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37202113 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230718 $b ABA008
991    __
$a 20230801132833 $b ABA008
999    __
$a ok $b bmc $g 1963509 $s 1197430
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 44 $c 6 $d 641-648 $e 20230518 $i 1936-959X $m American journal of neuroradiology $n AJNR Am J Neuroradiol $x MED00009116
LZP    __
$a Pubmed-20230718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...