-
Je něco špatně v tomto záznamu ?
Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma
J. Bohosova, K. Kozelkova, D. Al Tukmachi, K. Trachtova, O. Naar, M. Ruckova, E. Kolarikova, M. Stanik, A. Poprach, O. Slaby
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
Grantová podpora
NV18-03-00554
Ministerstvo Zdravotnictví Ceské Republiky
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2003-04-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
Public Health Database (ProQuest)
od 1997-01-01 do Před 1 rokem
ROAD: Directory of Open Access Scholarly Resources
od 1997
- MeSH
- karcinom z renálních buněk * diagnóza genetika chirurgie MeSH
- lidé MeSH
- lokální recidiva nádoru diagnóza genetika chirurgie MeSH
- nádorové biomarkery genetika MeSH
- nádory ledvin * diagnóza genetika chirurgie MeSH
- nefrektomie MeSH
- regulace genové exprese u nádorů MeSH
- RNA dlouhá nekódující * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS: Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS: Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION: In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc23016768
- 003
- CZ-PrNML
- 005
- 20231026105550.0
- 007
- ta
- 008
- 231013s2023 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00432-023-04700-7 $2 doi
- 035 __
- $a (PubMed)36988708
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Bohosova, Julia $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic $u Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- 245 10
- $a Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma / $c J. Bohosova, K. Kozelkova, D. Al Tukmachi, K. Trachtova, O. Naar, M. Ruckova, E. Kolarikova, M. Stanik, A. Poprach, O. Slaby
- 520 9_
- $a PURPOSE: Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS: Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS: Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION: In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a karcinom z renálních buněk $x diagnóza $x genetika $x chirurgie $7 D002292
- 650 12
- $a RNA dlouhá nekódující $x genetika $7 D062085
- 650 _2
- $a nádorové biomarkery $x genetika $7 D014408
- 650 _2
- $a lokální recidiva nádoru $x diagnóza $x genetika $x chirurgie $7 D009364
- 650 _2
- $a nefrektomie $7 D009392
- 650 12
- $a nádory ledvin $x diagnóza $x genetika $x chirurgie $7 D007680
- 650 _2
- $a regulace genové exprese u nádorů $7 D015972
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kozelkova, Katerina $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- 700 1_
- $a Al Tukmachi, Dagmar $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- 700 1_
- $a Trachtova, Karolina $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- 700 1_
- $a Naar, Ondrej $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- 700 1_
- $a Ruckova, Michaela $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
- 700 1_
- $a Kolarikova, Eva $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
- 700 1_
- $a Stanik, Michal $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
- 700 1_
- $a Poprach, Alexandr $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
- 700 1_
- $a Slaby, Ondrej $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic. on.slaby@gmail.com $u Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. on.slaby@gmail.com
- 773 0_
- $w MED00009972 $t Journal of cancer research and clinical oncology $x 1432-1335 $g Roč. 149, č. 10 (2023), s. 7587-7600
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36988708 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20231013 $b ABA008
- 991 __
- $a 20231026105544 $b ABA008
- 999 __
- $a ok $b bmc $g 2000351 $s 1203130
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2023 $b 149 $c 10 $d 7587-7600 $e 20230329 $i 1432-1335 $m Journal of cancer research and clinical oncology $n J Cancer Res Clin Oncol $x MED00009972
- GRA __
- $a NV18-03-00554 $p Ministerstvo Zdravotnictví Ceské Republiky
- LZP __
- $a Pubmed-20231013