Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma

J. Bohosova, K. Kozelkova, D. Al Tukmachi, K. Trachtova, O. Naar, M. Ruckova, E. Kolarikova, M. Stanik, A. Poprach, O. Slaby

. 2023 ; 149 (10) : 7587-7600. [pub] 20230329

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016768

Grantová podpora
NV18-03-00554 Ministerstvo Zdravotnictví Ceské Republiky

PURPOSE: Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS: Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS: Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION: In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016768
003      
CZ-PrNML
005      
20231026105550.0
007      
ta
008      
231013s2023 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00432-023-04700-7 $2 doi
035    __
$a (PubMed)36988708
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Bohosova, Julia $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic $u Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
245    10
$a Long non-coding RNAs enable precise diagnosis and prediction of early relapse after nephrectomy in patients with renal cell carcinoma / $c J. Bohosova, K. Kozelkova, D. Al Tukmachi, K. Trachtova, O. Naar, M. Ruckova, E. Kolarikova, M. Stanik, A. Poprach, O. Slaby
520    9_
$a PURPOSE: Renal cell carcinoma belongs among the deadliest malignancies despite great progress in therapy and accessibility of primary care. One of the main unmet medical needs remains the possibility of early diagnosis before the tumor dissemination and prediction of early relapse and disease progression after a successful nephrectomy. In our study, we aimed to identify novel diagnostic and prognostic biomarkers using next-generation sequencing on a novel cohort of RCC patients. METHODS: Global expression profiles have been obtained using next-generation sequencing of paired tumor and non-tumor tissue of 48 RCC patients. Twenty candidate lncRNA have been selected for further validation on an independent cohort of paired tumor and non-tumor tissue of 198 RCC patients. RESULTS: Sequencing data analysis showed significant dysregulation of more than 2800 lncRNAs. Out of 20 candidate lncRNAs selected for validation, we confirmed that 14 of them are statistically significantly dysregulated. In order to yield better discriminatory results, we combined several best performing lncRNAs into diagnostic and prognostic models. A diagnostic model consisting of AZGP1P1, CDKN2B-AS1, COL18A1, and RMST achieved AUC 0.9808, sensitivity 95.96%, and specificity 90.4%. The model for prediction of early relapse after nephrectomy consists of COLCA1, RMST, SNHG3, and ZNF667-AS1 and achieved AUC 0.9241 with sensitivity 93.75% and specificity 71.07%. Notably, no combination has outperformed COLCA1 alone. Lastly, a model for stage consists of ZNF667-AS1, PVT1, RMST, LINC00955, and TCL6 and achieves AUC 0.812, sensitivity 85.71%, and specificity 69.41%. CONCLUSION: In our work, we identified several lncRNAs as potential biomarkers and developed models for diagnosis and prognostication in relation to stage and early relapse after nephrectomy.
650    _2
$a lidé $7 D006801
650    12
$a karcinom z renálních buněk $x diagnóza $x genetika $x chirurgie $7 D002292
650    12
$a RNA dlouhá nekódující $x genetika $7 D062085
650    _2
$a nádorové biomarkery $x genetika $7 D014408
650    _2
$a lokální recidiva nádoru $x diagnóza $x genetika $x chirurgie $7 D009364
650    _2
$a nefrektomie $7 D009392
650    12
$a nádory ledvin $x diagnóza $x genetika $x chirurgie $7 D007680
650    _2
$a regulace genové exprese u nádorů $7 D015972
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kozelkova, Katerina $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
700    1_
$a Al Tukmachi, Dagmar $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
700    1_
$a Trachtova, Karolina $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
700    1_
$a Naar, Ondrej $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
700    1_
$a Ruckova, Michaela $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic
700    1_
$a Kolarikova, Eva $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
700    1_
$a Stanik, Michal $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
700    1_
$a Poprach, Alexandr $u Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Zluty Kopec 543/7, 602 00, Brno, Czech Republic
700    1_
$a Slaby, Ondrej $u Masaryk University, Central European Institute of Technology, Kamenice 753/5, 625 00, Brno, Czech Republic. on.slaby@gmail.com $u Faculty of Medicine, Department of Biology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. on.slaby@gmail.com
773    0_
$w MED00009972 $t Journal of cancer research and clinical oncology $x 1432-1335 $g Roč. 149, č. 10 (2023), s. 7587-7600
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36988708 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105544 $b ABA008
999    __
$a ok $b bmc $g 2000351 $s 1203130
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 149 $c 10 $d 7587-7600 $e 20230329 $i 1432-1335 $m Journal of cancer research and clinical oncology $n J Cancer Res Clin Oncol $x MED00009972
GRA    __
$a NV18-03-00554 $p Ministerstvo Zdravotnictví Ceské Republiky
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...