Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Design of a stable human acid-β-glucosidase: towards improved Gaucher disease therapy and mutation classification

S. Pokorna, O. Khersonsky, R. Lipsh-Sokolik, A. Goldenzweig, R. Nielsen, Y. Ashani, Y. Peleg, T. Unger, S. Albeck, O. Dym, A. Tirosh, R. Tarayra, M. Hocquemiller, R. Laufer, S. Ben-Dor, I. Silman, JL. Sussman, SJ. Fleishman, AH. Futerman

. 2023 ; 290 (13) : 3383-3399. [pub] 20230323

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 2005 to 1 year ago
Medline Complete (EBSCOhost) from 2005-01-01 to 1 year ago
Wiley Free Content from 2005 to 1 year ago

Acid-β-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23017027
003      
CZ-PrNML
005      
20231026105332.0
007      
ta
008      
231013s2023 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/febs.16758 $2 doi
035    __
$a (PubMed)36808692
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Pokorna, Sarka $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel $u J.Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000270469440
245    10
$a Design of a stable human acid-β-glucosidase: towards improved Gaucher disease therapy and mutation classification / $c S. Pokorna, O. Khersonsky, R. Lipsh-Sokolik, A. Goldenzweig, R. Nielsen, Y. Ashani, Y. Peleg, T. Unger, S. Albeck, O. Dym, A. Tirosh, R. Tarayra, M. Hocquemiller, R. Laufer, S. Ben-Dor, I. Silman, JL. Sussman, SJ. Fleishman, AH. Futerman
520    9_
$a Acid-β-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.
650    _2
$a lidé $7 D006801
650    12
$a Gaucherova nemoc $x farmakoterapie $x genetika $7 D005776
650    12
$a Parkinsonova nemoc $x genetika $7 D010300
650    _2
$a heterozygot $7 D006579
650    _2
$a mutace $7 D009154
650    12
$a celulasy $x genetika $7 D044602
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Khersonsky, Olga $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Lipsh-Sokolik, Rosalie $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Goldenzweig, Adi $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Nielsen, Rebekka $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Ashani, Yacov $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Peleg, Yoav $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Unger, Tamar $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Albeck, Shira $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Dym, Orly $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Tirosh, Asa $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Tarayra, Rana $u Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Hocquemiller, Michaël $u Lysogene, Neuilly-sur-Seine, France
700    1_
$a Laufer, Ralph $u Lysogene, Neuilly-sur-Seine, France
700    1_
$a Ben-Dor, Shifra $u Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel $1 https://orcid.org/0000000196041939
700    1_
$a Silman, Israel $u Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
700    1_
$a Sussman, Joel L $u Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel $1 https://orcid.org/0000000303063878
700    1_
$a Fleishman, Sarel J $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel $1 https://orcid.org/0000000331777560
700    1_
$a Futerman, Anthony H $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel $1 https://orcid.org/0000000300130115
773    0_
$w MED00008414 $t The FEBS journal $x 1742-4658 $g Roč. 290, č. 13 (2023), s. 3383-3399
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36808692 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105327 $b ABA008
999    __
$a ok $b bmc $g 2000512 $s 1203389
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 290 $c 13 $d 3383-3399 $e 20230323 $i 1742-4658 $m The FEBS journal $n FEBS J $x MED00008414
LZP    __
$a Pubmed-20231013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...