• Je něco špatně v tomto záznamu ?

Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation

G. Taleva, M. Husová, B. Panicucci, C. Hierro-Yap, E. Pineda, M. Biran, M. Moos, P. Šimek, F. Butter, F. Bringaud, A. Zíková

. 2023 ; 19 (10) : e1011699. [pub] 20231011

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc24001059

The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24001059
003      
CZ-PrNML
005      
20240213093605.0
007      
ta
008      
240109s2023 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.ppat.1011699 $2 doi
035    __
$a (PubMed)37819951
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Taleva, Gergana $u Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic $u Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
245    10
$a Mitochondrion of the Trypanosoma brucei long slender bloodstream form is capable of ATP production by substrate-level phosphorylation / $c G. Taleva, M. Husová, B. Panicucci, C. Hierro-Yap, E. Pineda, M. Biran, M. Moos, P. Šimek, F. Butter, F. Bringaud, A. Zíková
520    9_
$a The long slender bloodstream form Trypanosoma brucei maintains its essential mitochondrial membrane potential (ΔΨm) through the proton-pumping activity of the FoF1-ATP synthase operating in the reverse mode. The ATP that drives this hydrolytic reaction has long been thought to be generated by glycolysis and imported from the cytosol via an ATP/ADP carrier (AAC). Indeed, we demonstrate that AAC is the only carrier that can import ATP into the mitochondrial matrix to power the hydrolytic activity of the FoF1-ATP synthase. However, contrary to expectations, the deletion of AAC has no effect on parasite growth, virulence or levels of ΔΨm. This suggests that ATP is produced by substrate-level phosphorylation pathways in the mitochondrion. Therefore, we knocked out the succinyl-CoA synthetase (SCS) gene, a key mitochondrial enzyme that produces ATP through substrate-level phosphorylation in this parasite. Its absence resulted in changes to the metabolic landscape of the parasite, lowered virulence, and reduced mitochondrial ATP content. Strikingly, these SCS mutant parasites become more dependent on AAC as demonstrated by a 25-fold increase in their sensitivity to the AAC inhibitor, carboxyatractyloside. Since the parasites were able to adapt to the loss of SCS in culture, we also analyzed the more immediate phenotypes that manifest when SCS expression is rapidly suppressed by RNAi. Importantly, when performed under nutrient-limited conditions mimicking various host environments, SCS depletion strongly affected parasite growth and levels of ΔΨm. In totality, the data establish that the long slender bloodstream form mitochondrion is capable of generating ATP via substrate-level phosphorylation pathways.
650    12
$a Trypanosoma brucei brucei $x metabolismus $7 D014346
650    _2
$a fosforylace $7 D010766
650    _2
$a mitochondrie $x metabolismus $7 D008928
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Husová, Michaela $u Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic $u Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
700    1_
$a Panicucci, Brian $u Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic
700    1_
$a Hierro-Yap, Carolina $u Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic $u Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic
700    1_
$a Pineda, Erika $u Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
700    1_
$a Biran, Marc $u Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
700    1_
$a Moos, Martin $u Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
700    1_
$a Šimek, Petr $u Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech republic
700    1_
$a Butter, Falk $u Institute of Molecular Biology (IMB), Mainz, Germany $u Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald, Germany
700    1_
$a Bringaud, Frédéric $u Univ. Bordeaux, CNRS, Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, Bordeaux, France
700    1_
$a Zíková, Alena $u Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech republic $u Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech republic $1 https://orcid.org/0000000286860225 $7 xx0116130
773    0_
$w MED00008922 $t PLoS pathogens $x 1553-7374 $g Roč. 19, č. 10 (2023), s. e1011699
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37819951 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240109 $b ABA008
991    __
$a 20240213093602 $b ABA008
999    __
$a ok $b bmc $g 2049586 $s 1210753
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 19 $c 10 $d e1011699 $e 20231011 $i 1553-7374 $m PLoS pathogens $n PLoS Pathog $x MED00008922
LZP    __
$a Pubmed-20240109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...