• Something wrong with this record ?

A83-01 and DMH1 effects in the zebrafish spermatogonial niche: Unraveling the roles of TGF-β and BMP signaling in the Fsh-mediated spermatogonial fate

D. Fernandes da Costa, A. de Oliveira Ribeiro, J. Morena Bonita Ricci, M. da Silva Rodrigues, M. Antonio de Oliveira, I. Felipe da Rosa, L. Benites Doretto, R. Takahiro Nakajima, R. Henrique Nóbrega

. 2024 ; 897 (-) : 148082. [pub] 20231213

Language English Country Netherlands

Document type Journal Article

Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling has fundamental roles in the regulation of the stem cell niche for both embryonic and adult stem cells. In zebrafish, male germ stem cell niche is regulated by follicle-stimulating hormone (Fsh) through different members of the TGF-β superfamily. On the other hand, the specific roles of TGF-β and BMP signaling pathways are unknown in the zebrafish male germ stem cell niche. Considering this lack of information, the present study aimed to investigate the pharmacological inhibition of TGF-β (A83-01) and BMP (DMH1) signaling pathways in the presence of recombinant zebrafish Fsh using testicular explants. We also reanalyzed single cell-RNA sequencing (sc-RNA-seq) dataset from adult zebrafish testes to identify the testicular cellular sites of smad expression, and to understand the physiological significance of the changes in smad transcript levels after inhibition of TGF-β or BMP pathways. Our results showed that A83-01 potentiated the pro-stimulatory effects of Fsh on spermatogonial differentiation leading to an increase in the proportion area occupied by differentiated spermatogonia with concomitant reduction of type A undifferentiated (Aund) spermatogonia. In agreement, expression analysis showed lower mRNA levels for the pluripotency gene pou5f3, and increased expression of dazl (marker of type B spermatogonia and spermatocyte) and igf3 (pro-stimulatory growth factor) following the co-treatment with TGF-β inhibitor and Fsh. Contrariwise, the inhibition of BMP signaling nullified the pro-stimulatory effects of Fsh, resulting in a reduction of differentiated spermatogonia and increased proportion area occupied by type Aund spermatogonia. Supporting this evidence, BMP signaling inhibition increased the mRNA levels of pluripotency genes nanog and pou5f3, and decreased dazl levels when compared to control. The sc-RNA-seq data unveiled a distinctive pattern of smad expression among testicular cells, primarily observed in spermatogonia (smad 2, 3a, 3b, 8), spermatocytes (smad 2, 3a, 8), Sertoli cells (smad 1, 3a, 3b), and Leydig cells (smad 1, 2). This finding supports the notion that inhibition of TGF-β and BMP signaling pathways may predominantly impact cellular components within the spermatogonial niche, namely spermatogonia, Sertoli, and Leydig cells. In conclusion, our study demonstrated that TGF-β and BMP signaling pathways exert antagonistic roles in the zebrafish germ stem cell niche. The members of the TGF-β subfamily are mainly involved in maintaining the undifferentiated state of spermatogonia, while the BMP subfamily promotes spermatogonial differentiation. Therefore, in the complex regulation of the germ stem cell niche by Fsh, members of the BMP subfamily (pro-differentiation) should be more predominant in the niche than those belonging to the TGF-β (anti-differentiation). Overall, these findings are not only relevant for understanding the regulation of germ stem cell niche but may also be useful for expanding in vitro the number of undifferentiated spermatogonia more efficiently than using recombinant hormones or growth factors.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006952
003      
CZ-PrNML
005      
20240423155613.0
007      
ta
008      
240412e20231213ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.gene.2023.148082 $2 doi
035    __
$a (PubMed)38101710
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Fernandes da Costa, Daniel $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
245    10
$a A83-01 and DMH1 effects in the zebrafish spermatogonial niche: Unraveling the roles of TGF-β and BMP signaling in the Fsh-mediated spermatogonial fate / $c D. Fernandes da Costa, A. de Oliveira Ribeiro, J. Morena Bonita Ricci, M. da Silva Rodrigues, M. Antonio de Oliveira, I. Felipe da Rosa, L. Benites Doretto, R. Takahiro Nakajima, R. Henrique Nóbrega
520    9_
$a Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling has fundamental roles in the regulation of the stem cell niche for both embryonic and adult stem cells. In zebrafish, male germ stem cell niche is regulated by follicle-stimulating hormone (Fsh) through different members of the TGF-β superfamily. On the other hand, the specific roles of TGF-β and BMP signaling pathways are unknown in the zebrafish male germ stem cell niche. Considering this lack of information, the present study aimed to investigate the pharmacological inhibition of TGF-β (A83-01) and BMP (DMH1) signaling pathways in the presence of recombinant zebrafish Fsh using testicular explants. We also reanalyzed single cell-RNA sequencing (sc-RNA-seq) dataset from adult zebrafish testes to identify the testicular cellular sites of smad expression, and to understand the physiological significance of the changes in smad transcript levels after inhibition of TGF-β or BMP pathways. Our results showed that A83-01 potentiated the pro-stimulatory effects of Fsh on spermatogonial differentiation leading to an increase in the proportion area occupied by differentiated spermatogonia with concomitant reduction of type A undifferentiated (Aund) spermatogonia. In agreement, expression analysis showed lower mRNA levels for the pluripotency gene pou5f3, and increased expression of dazl (marker of type B spermatogonia and spermatocyte) and igf3 (pro-stimulatory growth factor) following the co-treatment with TGF-β inhibitor and Fsh. Contrariwise, the inhibition of BMP signaling nullified the pro-stimulatory effects of Fsh, resulting in a reduction of differentiated spermatogonia and increased proportion area occupied by type Aund spermatogonia. Supporting this evidence, BMP signaling inhibition increased the mRNA levels of pluripotency genes nanog and pou5f3, and decreased dazl levels when compared to control. The sc-RNA-seq data unveiled a distinctive pattern of smad expression among testicular cells, primarily observed in spermatogonia (smad 2, 3a, 3b, 8), spermatocytes (smad 2, 3a, 8), Sertoli cells (smad 1, 3a, 3b), and Leydig cells (smad 1, 2). This finding supports the notion that inhibition of TGF-β and BMP signaling pathways may predominantly impact cellular components within the spermatogonial niche, namely spermatogonia, Sertoli, and Leydig cells. In conclusion, our study demonstrated that TGF-β and BMP signaling pathways exert antagonistic roles in the zebrafish germ stem cell niche. The members of the TGF-β subfamily are mainly involved in maintaining the undifferentiated state of spermatogonia, while the BMP subfamily promotes spermatogonial differentiation. Therefore, in the complex regulation of the germ stem cell niche by Fsh, members of the BMP subfamily (pro-differentiation) should be more predominant in the niche than those belonging to the TGF-β (anti-differentiation). Overall, these findings are not only relevant for understanding the regulation of germ stem cell niche but may also be useful for expanding in vitro the number of undifferentiated spermatogonia more efficiently than using recombinant hormones or growth factors.
650    _2
$a zvířata $7 D000818
650    _2
$a mužské pohlaví $7 D008297
650    12
$a spermatogonie $x metabolismus $7 D013093
650    12
$a dánio pruhované $x genetika $7 D015027
650    _2
$a folikuly stimulující hormon $x farmakologie $x metabolismus $7 D005640
650    _2
$a transformující růstový faktor beta $x metabolismus $7 D016212
650    _2
$a testis $x metabolismus $7 D013737
650    _2
$a buněčná diferenciace $x genetika $7 D002454
650    _2
$a messenger RNA $x genetika $7 D012333
650    _2
$a spermatogeneze $x genetika $7 D013091
650    12
$a pyrazoly $7 D011720
650    12
$a thiosemikarbazony $7 D013882
655    _2
$a časopisecké články $7 D016428
700    1_
$a de Oliveira Ribeiro, Amanda $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Morena Bonita Ricci, Juliana $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a da Silva Rodrigues, Maira $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Antonio de Oliveira, Marcos $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Felipe da Rosa, Ivana $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Benites Doretto, Lucas $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Takahiro Nakajima, Rafael $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
700    1_
$a Henrique Nóbrega, Rafael $u Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic. Electronic address: rafael.nobrega@unesp.br
773    0_
$w MED00001888 $t Gene $x 1879-0038 $g Roč. 897 (20231213), s. 148082
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38101710 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155609 $b ABA008
999    __
$a ok $b bmc $g 2081123 $s 1216719
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 897 $c - $d 148082 $e 20231213 $i 1879-0038 $m Gene $n Gene $x MED00001888
LZP    __
$a Pubmed-20240412

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...