• Something wrong with this record ?

Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles

S. Fernandes, M. Cassani, F. Cavalieri, G. Forte, F. Caruso

. 2024 ; 11 (8) : e2305769. [pub] 20231206

Language English Country Germany

Document type Journal Article, Review

Grant support
872233 Horizon 2020
860715 Horizon 2020
101070546 Horizon 2020
GNT2016732 National Health and Medical Research Council
Fondazione per la Ricerca sul Cancro
800924 Marie Skłodowska-Curie
101031744 Marie Curie H2020-MSCA-IF-2020 MSCA-IF-GF
NU23J-08-00035 Ministry of Health of the Czech Republic
RE/18/2/34213 King's BHF Centre of Research Excellence

The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007367
003      
CZ-PrNML
005      
20240423155913.0
007      
ta
008      
240412s2024 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/advs.202305769 $2 doi
035    __
$a (PubMed)38054651
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Fernandes, Soraia $u Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne Hospital, Brno, 656 91, Czech Republic $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia $1 https://orcid.org/0000000175861241
245    10
$a Emerging Strategies for Immunotherapy of Solid Tumors Using Lipid-Based Nanoparticles / $c S. Fernandes, M. Cassani, F. Cavalieri, G. Forte, F. Caruso
520    9_
$a The application of lipid-based nanoparticles for COVID-19 vaccines and transthyretin-mediated amyloidosis treatment have highlighted their potential for translation to cancer therapy. However, their use in delivering drugs to solid tumors is limited by ineffective targeting, heterogeneous organ distribution, systemic inflammatory responses, and insufficient drug accumulation at the tumor. Instead, the use of lipid-based nanoparticles to remotely activate immune system responses is an emerging effective strategy. Despite this approach showing potential for treating hematological cancers, its application to treat solid tumors is hampered by the selection of eligible targets, tumor heterogeneity, and ineffective penetration of activated T cells within the tumor. Notwithstanding, the use of lipid-based nanoparticles for immunotherapy is projected to revolutionize cancer therapy, with the ultimate goal of rendering cancer a chronic disease. However, the translational success is likely to depend on the use of predictive tumor models in preclinical studies, simulating the complexity of the tumor microenvironment (e.g., the fibrotic extracellular matrix that impairs therapeutic outcomes) and stimulating tumor progression. This review compiles recent advances in the field of antitumor lipid-based nanoparticles and highlights emerging therapeutic approaches (e.g., mechanotherapy) to modulate tumor stiffness and improve T cell infiltration, and the use of organoids to better guide therapeutic outcomes.
650    _2
$a lidé $7 D006801
650    _2
$a vakcíny proti COVID-19 $7 D000086663
650    _2
$a imunoterapie $7 D007167
650    12
$a nádory $x terapie $7 D009369
650    12
$a familiární amyloidové neuropatie $7 D028227
650    _2
$a lipidy $7 D008055
650    _2
$a nádorové mikroprostředí $7 D059016
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Cassani, Marco $u Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne Hospital, Brno, 656 91, Czech Republic $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia $1 https://orcid.org/0000000184377734
700    1_
$a Cavalieri, Francesca $u School of Science, RMIT University, Melbourne, Victoria, 3000, Australia $u Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy $1 https://orcid.org/0000000153915069
700    1_
$a Forte, Giancarlo $u Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne Hospital, Brno, 656 91, Czech Republic $u School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, SE5 9NU, UK $1 https://orcid.org/0000000213411023
700    1_
$a Caruso, Frank $u Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia $1 https://orcid.org/000000020197497X $7 jo2012715762
773    0_
$w MED00208721 $t Advanced science $x 2198-3844 $g Roč. 11, č. 8 (2024), s. e2305769
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38054651 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155909 $b ABA008
999    __
$a ok $b bmc $g 2081379 $s 1217134
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 11 $c 8 $d e2305769 $e 20231206 $i 2198-3844 $m Advanced science $n Adv Sci (Weinh) $x MED00208721
GRA    __
$a 872233 $p Horizon 2020
GRA    __
$a 860715 $p Horizon 2020
GRA    __
$a 101070546 $p Horizon 2020
GRA    __
$a GNT2016732 $p National Health and Medical Research Council
GRA    __
$p Fondazione per la Ricerca sul Cancro
GRA    __
$a 800924 $p Marie Skłodowska-Curie
GRA    __
$a 101031744 $p Marie Curie H2020-MSCA-IF-2020 MSCA-IF-GF
GRA    __
$a NU23J-08-00035 $p Ministry of Health of the Czech Republic
GRA    __
$a RE/18/2/34213 $p King's BHF Centre of Research Excellence
LZP    __
$a Pubmed-20240412

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...