• Something wrong with this record ?

A Framework for Assessing the Effect of Cardiac and Respiratory Motion for Stereotactic Arrhythmia Radioablation Using a Digital Phantom With a 17-Segment Model: A STOPSTORM.eu Consortium Study

RRF. Stevens, C. Hazelaar, M. Bogowicz, RMA. Ter Bekke, PGA. Volders, K. Verhoeven, D. de Ruysscher, JJC. Verhoeff, MF. Fast, S. Mandija, J. Cvek, L. Knybel, P. Dvorak, O. Blanck, W. van Elmpt

. 2024 ; 118 (2) : 533-542. [pub] 20230829

Language English Country United States

Document type Journal Article

PURPOSE: The optimal motion management strategy for patients receiving stereotactic arrhythmia radioablation (STAR) for the treatment of ventricular tachycardia (VT) is not fully known. We developed a framework using a digital phantom to simulate cardiorespiratory motion in combination with different motion management strategies to gain insight into the effect of cardiorespiratory motion on STAR. METHODS AND MATERIALS: The 4-dimensional (4D) extended cardiac-torso (XCAT) phantom was expanded with the 17-segment left ventricular (LV) model, which allowed placement of STAR targets in standardized ventricular regions. Cardiac- and respiratory-binned 4D computed tomography (CT) scans were simulated for free-breathing, reduced free-breathing, respiratory-gating, and breath-hold scenarios. Respiratory motion of the heart was set to population-averaged values of patients with VT: 6, 2, and 1 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction was adjusted by reducing LV ejection fraction to 35%. Target displacement was evaluated for all segments using envelopes encompassing the cardiorespiratory motion. Envelopes incorporating only the diastole plus respiratory motion were created to simulate the scenario where cardiac motion is not fully captured on 4D respiratory CT scans used for radiation therapy planning. RESULTS: The average volume of the 17 segments was 6 cm3 (1-9 cm3). Cardiac contraction-relaxation resulted in maximum segment (centroid) motion of 4, 6, and 3.5 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction-relaxation resulted in a motion envelope increase of 49% (24%-79%) compared with individual segment volumes, whereas envelopes increased by 126% (79%-167%) if respiratory motion also was considered. Envelopes incorporating only the diastole and respiration motion covered on average 68% to 75% of the motion envelope. CONCLUSIONS: The developed LV-segmental XCAT framework showed that free-wall regions display the most cardiorespiratory displacement. Our framework supports the optimization of STAR by evaluating the effect of (cardio)respiratory motion and motion management strategies for patients with VT.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24007446
003      
CZ-PrNML
005      
20240423155951.0
007      
ta
008      
240412s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ijrobp.2023.08.059 $2 doi
035    __
$a (PubMed)37652302
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Stevens, Raoul R F $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands. Electronic address: raoul.stevens@maastro.nl
245    12
$a A Framework for Assessing the Effect of Cardiac and Respiratory Motion for Stereotactic Arrhythmia Radioablation Using a Digital Phantom With a 17-Segment Model: A STOPSTORM.eu Consortium Study / $c RRF. Stevens, C. Hazelaar, M. Bogowicz, RMA. Ter Bekke, PGA. Volders, K. Verhoeven, D. de Ruysscher, JJC. Verhoeff, MF. Fast, S. Mandija, J. Cvek, L. Knybel, P. Dvorak, O. Blanck, W. van Elmpt
520    9_
$a PURPOSE: The optimal motion management strategy for patients receiving stereotactic arrhythmia radioablation (STAR) for the treatment of ventricular tachycardia (VT) is not fully known. We developed a framework using a digital phantom to simulate cardiorespiratory motion in combination with different motion management strategies to gain insight into the effect of cardiorespiratory motion on STAR. METHODS AND MATERIALS: The 4-dimensional (4D) extended cardiac-torso (XCAT) phantom was expanded with the 17-segment left ventricular (LV) model, which allowed placement of STAR targets in standardized ventricular regions. Cardiac- and respiratory-binned 4D computed tomography (CT) scans were simulated for free-breathing, reduced free-breathing, respiratory-gating, and breath-hold scenarios. Respiratory motion of the heart was set to population-averaged values of patients with VT: 6, 2, and 1 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction was adjusted by reducing LV ejection fraction to 35%. Target displacement was evaluated for all segments using envelopes encompassing the cardiorespiratory motion. Envelopes incorporating only the diastole plus respiratory motion were created to simulate the scenario where cardiac motion is not fully captured on 4D respiratory CT scans used for radiation therapy planning. RESULTS: The average volume of the 17 segments was 6 cm3 (1-9 cm3). Cardiac contraction-relaxation resulted in maximum segment (centroid) motion of 4, 6, and 3.5 mm in the superior-inferior, posterior-anterior, and left-right direction, respectively. Cardiac contraction-relaxation resulted in a motion envelope increase of 49% (24%-79%) compared with individual segment volumes, whereas envelopes increased by 126% (79%-167%) if respiratory motion also was considered. Envelopes incorporating only the diastole and respiration motion covered on average 68% to 75% of the motion envelope. CONCLUSIONS: The developed LV-segmental XCAT framework showed that free-wall regions display the most cardiorespiratory displacement. Our framework supports the optimization of STAR by evaluating the effect of (cardio)respiratory motion and motion management strategies for patients with VT.
650    _2
$a lidé $7 D006801
650    12
$a srdce $x diagnostické zobrazování $x účinky záření $7 D006321
650    12
$a dýchání $7 D012119
650    _2
$a srdeční komory $x diagnostické zobrazování $x účinky záření $7 D006352
650    _2
$a pohyb těles $7 D009038
650    _2
$a čtyřrozměrná počítačová tomografie $7 D056973
650    _2
$a srdeční arytmie $7 D001145
650    _2
$a fantomy radiodiagnostické $7 D019047
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hazelaar, Colien $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a Bogowicz, Marta $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a Ter Bekke, Rachel M A $u Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a Volders, Paul G A $u Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a Verhoeven, Karolien $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a de Ruysscher, Dirk $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
700    1_
$a Verhoeff, Joost J C $u Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a Fast, Martin F $u Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a Mandija, Stefano $u Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
700    1_
$a Cvek, Jakub $u Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
700    1_
$a Knybel, Lukas $u Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
700    1_
$a Dvorak, Pavel $u Department of Oncology, University Hospital and Faculty of Medicine, Ostrava, Czech Republic
700    1_
$a Blanck, Oliver $u Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
700    1_
$a van Elmpt, Wouter $u Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
773    0_
$w MED00002371 $t International journal of radiation oncology, biology, physics $x 1879-355X $g Roč. 118, č. 2 (2024), s. 533-542
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37652302 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155948 $b ABA008
999    __
$a ok $b bmc $g 2081436 $s 1217213
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 118 $c 2 $d 533-542 $e 20230829 $i 1879-355X $m International journal of radiation oncology, biology, physics $n Int J Radiat Oncol Biol Phys $x MED00002371
LZP    __
$a Pubmed-20240412

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...