• Je něco špatně v tomto záznamu ?

Activation mechanisms and structural dynamics of STIM proteins

M. Sallinger, H. Grabmayr, C. Humer, D. Bonhenry, C. Romanin, R. Schindl, I. Derler

. 2024 ; 602 (8) : 1475-1507. [pub] 20230202

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24014516

Grantová podpora
P30567 Austrian Science Fund
P32851 Austrian Science Fund
P35900 Austrian Science Fund
P36202 Austrian Science Fund
P36202 Austrian Science Fund
P32778 Austrian Science Fund
P33283 Austrian Science Fund
P34884 Austrian Science Fund
19-20728Y Czech Science Foundation

E-zdroje Online Plný text

NLK Free Medical Journals od 1878 do Před 1 rokem
PubMed Central od 1878 do Před 1 rokem
Wiley Free Content od 1997 do Před 1 rokem

The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24014516
003      
CZ-PrNML
005      
20240905133456.0
007      
ta
008      
240725s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1113/JP283828 $2 doi
035    __
$a (PubMed)36651592
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sallinger, Matthias $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
245    10
$a Activation mechanisms and structural dynamics of STIM proteins / $c M. Sallinger, H. Grabmayr, C. Humer, D. Bonhenry, C. Romanin, R. Schindl, I. Derler
520    9_
$a The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
650    _2
$a vápník $x metabolismus $7 D002118
650    12
$a kanály aktivované uvolněním vápníku $7 D000071739
650    _2
$a vápníková signalizace $x fyziologie $7 D020013
650    _2
$a membránové proteiny $x metabolismus $7 D008565
650    _2
$a protein ORAI1 $7 D000071740
650    _2
$a protein STIM1 $x metabolismus $7 D000071737
650    12
$a proteiny STIM $x metabolismus $7 D000071736
655    _2
$a přehledy $7 D016454
655    _2
$a časopisecké články $7 D016428
700    1_
$a Grabmayr, Herwig $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria $1 https://orcid.org/0000000308705833
700    1_
$a Humer, Christina $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
700    1_
$a Bonhenry, Daniel $u Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic $1 https://orcid.org/0000000260697642
700    1_
$a Romanin, Christoph $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria $1 https://orcid.org/0000000337564136
700    1_
$a Schindl, Rainer $u Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria $u BioTechMed-Graz, Graz, Austria
700    1_
$a Derler, Isabella $u Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria $1 https://orcid.org/000000024768146X
773    0_
$w MED00002907 $t Journal of physiology (London. Print) $x 1469-7793 $g Roč. 602, č. 8 (2024), s. 1475-1507
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36651592 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240725 $b ABA008
991    __
$a 20240905133450 $b ABA008
999    __
$a ok $b bmc $g 2143960 $s 1226382
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 602 $c 8 $d 1475-1507 $e 20230202 $i 1469-7793 $m Journal of physiology (London. Print) $n J Physiol $x MED00002907
GRA    __
$a P30567 $p Austrian Science Fund
GRA    __
$a P32851 $p Austrian Science Fund
GRA    __
$a P35900 $p Austrian Science Fund
GRA    __
$a P36202 $p Austrian Science Fund
GRA    __
$a P36202 $p Austrian Science Fund
GRA    __
$a P32778 $p Austrian Science Fund
GRA    __
$a P33283 $p Austrian Science Fund
GRA    __
$a P34884 $p Austrian Science Fund
GRA    __
$a 19-20728Y $p Czech Science Foundation
LZP    __
$a Pubmed-20240725

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...