• Je něco špatně v tomto záznamu ?

Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes

M. Zatloukalova, J. Hanyk, B. Papouskova, M. Kabelac, J. Vostalova, J. Vacek

. 2024 ; 223 (-) : 212-223. [pub] 20240726

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24018778

Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24018778
003      
CZ-PrNML
005      
20241024111354.0
007      
ta
008      
241015e20240726xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.freeradbiomed.2024.07.032 $2 doi
035    __
$a (PubMed)39067626
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zatloukalova, Martina $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
245    10
$a Tapinarof and its structure-activity relationship for redox chemistry and phototoxicity on human skin keratinocytes / $c M. Zatloukalova, J. Hanyk, B. Papouskova, M. Kabelac, J. Vostalova, J. Vacek
520    9_
$a Tapinarof (3,5-dihydroxy-4-isopropylstilbene) is a therapeutic agent used in the treatment of psoriasis (VTAMA®). In this study, we examined the redox behaviour, (photo)stability, (photo)toxicity and (bio)transformation of tapinarof in the context of a structure-activity relationship study. Selected derivatives of the structurally related tapinarof were investigated, namely resveratrol, pterostilbene, pinosylvin and its methyl ether. Tapinarof undergoes electrochemical oxidation in a neutral aqueous medium at a potential of around +0.5 V (vs. Ag|AgCl|3M KCl). The anodic reaction of this substance is a proton-dependent irreversible and adsorption-driven process. The pKa value of tapinarof corresponds to 9.19 or 9.93, based on empirical and QM calculation approach, respectively. The oxidation potentials of tapinarof and its analogues correlate well with their HOMO (highest occupied molecular orbital) energy level. The ability to scavenge the DPPH radical decreased in the order trolox ≥ resveratrol > pterostilbene > tapinarof > pinosylvin ≫ pinosylvin methyl ether. It was also confirmed that tapinarof, being a moderate electron donor, is able to scavenge the ABTS radical and inhibit lipid peroxidation. The 4'-OH group plays a pivotal role in antioxidant action of stilbenols. During the stability studies, it was shown that tapinarof is subject to spontaneous degradation under aqueous conditions, and its degradation is accelerated at elevated temperatures and after exposure to UVA (315-399 nm) radiation. In aqueous media at pH 7.4, we observed an ∼50 % degradation of tapinarof after 48 h at laboratory temperature. The main UVA photodegradation processes include dihydroxylation and hydration. In conclusion, the phototoxic effect of tapinarof on a human keratinocytes cell line (HaCaT) was evaluated. Tapinarof exhibited a clear phototoxic effect, similar to phototoxic standard chlorpromazine. The IC50 values of the cytotoxicity and phototoxic effects of tapinarof correspond to 27.6 and 3.7 μM, respectively. The main HaCaT biotransformation products of tapinarof are sulfates and glucuronides.
650    _2
$a lidé $7 D006801
650    12
$a oxidace-redukce $7 D010084
650    12
$a keratinocyty $x účinky léků $x metabolismus $x účinky záření $7 D015603
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
650    12
$a stilbeny $x farmakologie $x chemie $7 D013267
650    _2
$a fototoxická dermatitida $7 D017484
650    _2
$a resveratrol $x farmakologie $x analogy a deriváty $x chemie $7 D000077185
650    _2
$a ultrafialové záření $7 D014466
650    _2
$a kůže $x účinky léků $x metabolismus $x účinky záření $x patologie $7 D012867
650    _2
$a antioxidancia $x farmakologie $x chemie $7 D000975
650    _2
$a buněčné linie keratinocytů HaCaT $7 D000084282
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hanyk, Jiri $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
700    1_
$a Papouskova, Barbora $u Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
700    1_
$a Kabelac, Martin $u Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
700    1_
$a Vostalova, Jitka $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic
700    1_
$a Vacek, Jan $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 3, 775 15, Olomouc, Czech Republic. Electronic address: jan.vacek@upol.cz
773    0_
$w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 223 (20240726), s. 212-223
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39067626 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111348 $b ABA008
999    __
$a ok $b bmc $g 2201564 $s 1230751
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 223 $c - $d 212-223 $e 20240726 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...