• Je něco špatně v tomto záznamu ?

Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T

D. Simicic, B. Alves, J. Mosso, G. Briand, TP. Lê, RB. van Heeswijk, J. Starčuková, B. Lanz, A. Klauser, B. Strasser, W. Bogner, C. Cudalbu

. 2025 ; 38 (2) : e5304. [pub] -

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25002822

Grantová podpora
201218 Swiss National Science Foundation - Switzerland
207935 Swiss National Science Foundation - Switzerland
CIBM Center for Biomedical Imaging

Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25002822
003      
CZ-PrNML
005      
20250206103905.0
007      
ta
008      
250121s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/nbm.5304 $2 doi
035    __
$a (PubMed)39711201
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Simicic, Dunja $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000266002696
245    10
$a Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T / $c D. Simicic, B. Alves, J. Mosso, G. Briand, TP. Lê, RB. van Heeswijk, J. Starčuková, B. Lanz, A. Klauser, B. Strasser, W. Bogner, C. Cudalbu
520    9_
$a Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.
650    _2
$a zvířata $7 D000818
650    12
$a mozek $x metabolismus $x diagnostické zobrazování $7 D001921
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a protonová magnetická rezonanční spektroskopie $x metody $7 D066244
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a poměr signál - šum $7 D059629
650    _2
$a potkani Sprague-Dawley $7 D017207
650    _2
$a potkani Wistar $7 D017208
650    _2
$a metabolom $7 D055442
655    _2
$a časopisecké články $7 D016428
700    1_
$a Alves, Brayan $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
700    1_
$a Mosso, Jessie $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $u Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000163189507
700    1_
$a Briand, Guillaume $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
700    1_
$a Lê, Thanh Phong $u Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000296155642
700    1_
$a van Heeswijk, Ruud B $u Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
700    1_
$a Starčuková, Jana $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000303377893 $7 xx0081879
700    1_
$a Lanz, Bernard $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/000000015136075X
700    1_
$a Klauser, Antoine $u Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland $1 https://orcid.org/0000000330199914
700    1_
$a Strasser, Bernhard $u High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
700    1_
$a Bogner, Wolfgang $u High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria $1 https://orcid.org/0000000201303463
700    1_
$a Cudalbu, Cristina $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000345822465
773    0_
$w MED00003529 $t NMR in biomedicine $x 1099-1492 $g Roč. 38, č. 2 (2025), s. e5304
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39711201 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206103901 $b ABA008
999    __
$a ok $b bmc $g 2262929 $s 1238829
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 38 $c 2 $d e5304 $e - $i 1099-1492 $m NMR in biomedicine $n NMR Biomed $x MED00003529
GRA    __
$a 201218 $p Swiss National Science Foundation $2 Switzerland
GRA    __
$a 207935 $p Swiss National Science Foundation $2 Switzerland
GRA    __
$p CIBM Center for Biomedical Imaging
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace