-
Je něco špatně v tomto záznamu ?
Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T
D. Simicic, B. Alves, J. Mosso, G. Briand, TP. Lê, RB. van Heeswijk, J. Starčuková, B. Lanz, A. Klauser, B. Strasser, W. Bogner, C. Cudalbu
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
201218
Swiss National Science Foundation - Switzerland
207935
Swiss National Science Foundation - Switzerland
CIBM Center for Biomedical Imaging
PubMed
39711201
DOI
10.1002/nbm.5304
Knihovny.cz E-zdroje
- MeSH
- krysa rodu rattus MeSH
- magnetická rezonanční tomografie metody MeSH
- metabolom MeSH
- mozek * metabolismus diagnostické zobrazování MeSH
- poměr signál - šum MeSH
- potkani Sprague-Dawley MeSH
- potkani Wistar MeSH
- protonová magnetická rezonanční spektroskopie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.
Advanced Clinical Imaging Technology Siemens Healthineers International AG Lausanne Switzerland
Animal Imaging and Technology École Polytechnique fédérale de Lausanne Lausanne Switzerland
CIBM Center for Biomedical Imaging Lausanne Switzerland
Institute of Scientific Instruments of the CAS Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25002822
- 003
- CZ-PrNML
- 005
- 20250206103905.0
- 007
- ta
- 008
- 250121s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/nbm.5304 $2 doi
- 035 __
- $a (PubMed)39711201
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Simicic, Dunja $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000266002696
- 245 10
- $a Fast High-Resolution Metabolite Mapping in the rat Brain Using 1H-FID-MRSI at 14.1 T / $c D. Simicic, B. Alves, J. Mosso, G. Briand, TP. Lê, RB. van Heeswijk, J. Starčuková, B. Lanz, A. Klauser, B. Strasser, W. Bogner, C. Cudalbu
- 520 9_
- $a Magnetic resonance spectroscopic imaging (MRSI) enables the simultaneous noninvasive acquisition of MR spectra from multiple spatial locations inside the brain. Although 1H-MRSI is increasingly used in the human brain, it is not yet widely applied in the preclinical setting, mostly because of difficulties specifically related to very small nominal voxel size in the rat brain and low concentration of brain metabolites, resulting in low signal-to-noise ratio (SNR). In this context, we implemented a free induction decay 1H-MRSI sequence (1H-FID-MRSI) in the rat brain at 14.1 T. We combined the advantages of 1H-FID-MRSI with the ultra-high magnetic field to achieve higher SNR, coverage, and spatial resolution in the rat brain and developed a custom dedicated processing pipeline with a graphical user interface for Bruker 1H-FID-MRSI: MRS4Brain toolbox. LCModel fit, using the simulated metabolite basis set and in vivo measured MM, provided reliable fits for the data at acquisition delays of 1.30 ms. The resulting Cramér-Rao lower bounds were sufficiently low (< 30%) for eight metabolites of interest (total creatine, N-acetylaspartate, N-acetylaspartate + N-acetylaspartylglutamate, total choline, glutamine, glutamate, myo-inositol, and taurine), leading to highly reproducible metabolic maps. Similar spectral quality and metabolic maps were obtained with one and two averages, with slightly better contrast and brain coverage due to increased SNR in the latter case. Furthermore, the obtained metabolic maps were accurate enough to confirm the previously known brain regional distribution of some metabolites. The acquisitions proved high reproducibility over time. We demonstrated that the increased SNR and spectral resolution at 14.1 T can be translated into high spatial resolution in 1H-FID-MRSI of the rat brain in 13 min using the sequence and processing pipeline described herein. High-resolution 1H-FID-MRSI at 14.1 T provided robust, reproducible, and high-quality metabolic mapping of brain metabolites with minimal technical limitations.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a mozek $x metabolismus $x diagnostické zobrazování $7 D001921
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a protonová magnetická rezonanční spektroskopie $x metody $7 D066244
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 _2
- $a potkani Sprague-Dawley $7 D017207
- 650 _2
- $a potkani Wistar $7 D017208
- 650 _2
- $a metabolom $7 D055442
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Alves, Brayan $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- 700 1_
- $a Mosso, Jessie $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $u Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000163189507
- 700 1_
- $a Briand, Guillaume $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- 700 1_
- $a Lê, Thanh Phong $u Laboratory of Functional and Metabolic Imaging, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000296155642
- 700 1_
- $a van Heeswijk, Ruud B $u Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- 700 1_
- $a Starčuková, Jana $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000303377893 $7 xx0081879
- 700 1_
- $a Lanz, Bernard $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/000000015136075X
- 700 1_
- $a Klauser, Antoine $u Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland $1 https://orcid.org/0000000330199914
- 700 1_
- $a Strasser, Bernhard $u High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
- 700 1_
- $a Bogner, Wolfgang $u High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria $1 https://orcid.org/0000000201303463
- 700 1_
- $a Cudalbu, Cristina $u CIBM Center for Biomedical Imaging, Lausanne, Switzerland $u Animal Imaging and Technology, École Polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland $1 https://orcid.org/0000000345822465
- 773 0_
- $w MED00003529 $t NMR in biomedicine $x 1099-1492 $g Roč. 38, č. 2 (2025), s. e5304
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39711201 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206103901 $b ABA008
- 999 __
- $a ok $b bmc $g 2262929 $s 1238829
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 38 $c 2 $d e5304 $e - $i 1099-1492 $m NMR in biomedicine $n NMR Biomed $x MED00003529
- GRA __
- $a 201218 $p Swiss National Science Foundation $2 Switzerland
- GRA __
- $a 207935 $p Swiss National Science Foundation $2 Switzerland
- GRA __
- $p CIBM Center for Biomedical Imaging
- LZP __
- $a Pubmed-20250121