Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Prognostic Significance and Associations of Neural Network-Derived Electrocardiographic Features

A. Sau, AH. Ribeiro, KA. McGurk, L. Pastika, N. Bajaj, M. Gurnani, E. Sieliwonczyk, K. Patlatzoglou, M. Ardissino, JY. Chen, H. Wu, X. Shi, K. Hnatkova, SL. Zheng, A. Britton, M. Shipley, I. Andršová, T. Novotný, EC. Sabino, L. Giatti, SM....

. 2024 ; 17 (12) : e010602. [pub] 20241114

Language English Country United States

Document type Journal Article, Multicenter Study

Grant support
FS/CRTF/21/24183 British Heart Foundation - United Kingdom
MR/Y000803/1 Medical Research Council - United Kingdom
RG/F/22/110078 British Heart Foundation - United Kingdom

BACKGROUND: Subtle, prognostically important ECG features may not be apparent to physicians. In the course of supervised machine learning, thousands of ECG features are identified. These are not limited to conventional ECG parameters and morphology. We aimed to investigate whether neural network-derived ECG features could be used to predict future cardiovascular disease and mortality and have phenotypic and genotypic associations. METHODS: We extracted 5120 neural network-derived ECG features from an artificial intelligence-enabled ECG model trained for 6 simple diagnoses and applied unsupervised machine learning to identify 3 phenogroups. Using the identified phenogroups, we externally validated our findings in 5 diverse cohorts from the United States, Brazil, and the United Kingdom. Data were collected between 2000 and 2023. RESULTS: In total, 1 808 584 patients were included in this study. In the derivation cohort, the 3 phenogroups had significantly different mortality profiles. After adjusting for known covariates, phenogroup B had a 20% increase in long-term mortality compared with phenogroup A (hazard ratio, 1.20 [95% CI, 1.17-1.23]; P<0.0001; phenogroup A mortality, 2.2%; phenogroup B mortality, 6.1%). In univariate analyses, we found phenogroup B had a significantly greater risk of mortality in all cohorts (log-rank P<0.01 in all 5 cohorts). Phenome-wide association study showed phenogroup B had a higher rate of future atrial fibrillation (odds ratio, 2.89; P<0.00001), ventricular tachycardia (odds ratio, 2.00; P<0.00001), ischemic heart disease (odds ratio, 1.44; P<0.00001), and cardiomyopathy (odds ratio, 2.04; P<0.00001). A single-trait genome-wide association study yielded 4 loci. SCN10A, SCN5A, and CAV1 have roles in cardiac conduction and arrhythmia. ARHGAP24 does not have a clear cardiac role and may be a novel target. CONCLUSIONS: Neural network-derived ECG features can be used to predict all-cause mortality and future cardiovascular diseases. We have identified biologically plausible and novel phenotypic and genotypic associations that describe mechanisms for the increased risk identified.

Department of Cardiology Chelsea and Westminster Hospital NHS Foundation Trust London United Kingdom

Department of Cardiology Imperial College Healthcare National Health Service Trust London United Kingdom

Department of Cardiology Royal Brompton and Harefield Hospitals Guy's and St Thomas' NHS Foundation Trust London United Kingdom

Department of Electrical and Electronic Engineering Imperial College London United Kingdom

Department of Infectious Diseases School of Medicine and Institute of Tropical Medicine University of São Paulo Brazil

Department of Information Technology Uppsala University Sweden

Department of Internal Medicine and Cardiology University Hospital Brno and Masaryk University Czech Republic

Department of Internal Medicine Faculdade de Medicina and Telehealth Center and Cardiology Service Hospital das Clínicas Universidade Federal de Minas Gerais Belo Horizonte Brazil

Department of Preventive Medicine School of Medicine and Hospital das Clínicas Empresa Brasileira de Serviços Hospitalares Universidade Federal de Minas Gerais Belo Horizonte Brazil

Faculty of Medicine and Health Sciences Center for Medical Genetics University of Antwerp and Antwerp University Hospital Antwerp Belgium

Harvard Thorndike Electrophysiology Institute Beth Israel Deaconess Medical Center Harvard Medical School Boston MA

Medical Research Council Laboratory of Medical Sciences Imperial College London United Kingdom

National Heart and Lung Institute Imperial College London United Kingdom

Research Department of Epidemiology and Public Health University College London United Kingdom

Richard A and Susan F Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Boston MA

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003160
003      
CZ-PrNML
005      
20250206104057.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1161/CIRCOUTCOMES.123.010602 $2 doi
035    __
$a (PubMed)39540287
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sau, Arunashis $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.) $1 https://orcid.org/0000000202047078
245    10
$a Prognostic Significance and Associations of Neural Network-Derived Electrocardiographic Features / $c A. Sau, AH. Ribeiro, KA. McGurk, L. Pastika, N. Bajaj, M. Gurnani, E. Sieliwonczyk, K. Patlatzoglou, M. Ardissino, JY. Chen, H. Wu, X. Shi, K. Hnatkova, SL. Zheng, A. Britton, M. Shipley, I. Andršová, T. Novotný, EC. Sabino, L. Giatti, SM. Barreto, JW. Waks, DB. Kramer, D. Mandic, NS. Peters, DP. O'Regan, M. Malik, JS. Ware, ALP. Ribeiro, FS. Ng
520    9_
$a BACKGROUND: Subtle, prognostically important ECG features may not be apparent to physicians. In the course of supervised machine learning, thousands of ECG features are identified. These are not limited to conventional ECG parameters and morphology. We aimed to investigate whether neural network-derived ECG features could be used to predict future cardiovascular disease and mortality and have phenotypic and genotypic associations. METHODS: We extracted 5120 neural network-derived ECG features from an artificial intelligence-enabled ECG model trained for 6 simple diagnoses and applied unsupervised machine learning to identify 3 phenogroups. Using the identified phenogroups, we externally validated our findings in 5 diverse cohorts from the United States, Brazil, and the United Kingdom. Data were collected between 2000 and 2023. RESULTS: In total, 1 808 584 patients were included in this study. In the derivation cohort, the 3 phenogroups had significantly different mortality profiles. After adjusting for known covariates, phenogroup B had a 20% increase in long-term mortality compared with phenogroup A (hazard ratio, 1.20 [95% CI, 1.17-1.23]; P<0.0001; phenogroup A mortality, 2.2%; phenogroup B mortality, 6.1%). In univariate analyses, we found phenogroup B had a significantly greater risk of mortality in all cohorts (log-rank P<0.01 in all 5 cohorts). Phenome-wide association study showed phenogroup B had a higher rate of future atrial fibrillation (odds ratio, 2.89; P<0.00001), ventricular tachycardia (odds ratio, 2.00; P<0.00001), ischemic heart disease (odds ratio, 1.44; P<0.00001), and cardiomyopathy (odds ratio, 2.04; P<0.00001). A single-trait genome-wide association study yielded 4 loci. SCN10A, SCN5A, and CAV1 have roles in cardiac conduction and arrhythmia. ARHGAP24 does not have a clear cardiac role and may be a novel target. CONCLUSIONS: Neural network-derived ECG features can be used to predict all-cause mortality and future cardiovascular diseases. We have identified biologically plausible and novel phenotypic and genotypic associations that describe mechanisms for the increased risk identified.
650    _2
$a senioři $7 D000368
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a kardiovaskulární nemoci $x diagnóza $x mortalita $x genetika $x patofyziologie $7 D002318
650    12
$a elektrokardiografie $7 D004562
650    _2
$a srdeční frekvence $7 D006339
650    12
$a neuronové sítě $7 D016571
650    12
$a fenotyp $7 D010641
650    12
$a prediktivní hodnota testů $7 D011237
650    _2
$a prognóza $7 D011379
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a hodnocení rizik $7 D018570
650    _2
$a rizikové faktory $7 D012307
650    _2
$a časové faktory $7 D013997
650    _2
$a strojové učení bez učitele $7 D000069558
651    _2
$a Spojené státy americké $x epidemiologie $7 D014481
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
700    1_
$a Ribeiro, Antônio H $u Department of Information Technology, Uppsala University, Sweden (A.H.R.) $1 https://orcid.org/0000000336328529
700    1_
$a McGurk, Kathryn A $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom $1 https://orcid.org/0000000254456906
700    1_
$a Pastika, Libor $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
700    1_
$a Bajaj, Nikesh $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000233610118
700    1_
$a Gurnani, Mehak $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0009000392282518
700    1_
$a Sieliwonczyk, Ewa $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom $u Faculty of Medicine and Health Sciences, Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium (E. Sieliwonczyk) $1 https://orcid.org/0000000286037044
700    1_
$a Patlatzoglou, Konstantinos $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000258888490
700    1_
$a Ardissino, Maddalena $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000226548117
700    1_
$a Chen, Jun Yu $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000218238282
700    1_
$a Wu, Huiyi $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000218099729
700    1_
$a Shi, Xili $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
700    1_
$a Hnatkova, Katerina $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $1 https://orcid.org/0000000201591610
700    1_
$a Zheng, Sean L $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom
700    1_
$a Britton, Annie $u Research Department of Epidemiology and Public Health, University College London, United Kingdom (A.B., M.S.) $1 https://orcid.org/0000000264125430
700    1_
$a Shipley, Martin $u Research Department of Epidemiology and Public Health, University College London, United Kingdom (A.B., M.S.)
700    1_
$a Andršová, Irena $u Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.) $1 https://orcid.org/0000000189735967
700    1_
$a Novotný, Tomáš $u Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.) $1 https://orcid.org/0000000202924034 $7 xx0055126
700    1_
$a Sabino, Ester C $u Department of Infectious Diseases, School of Medicine and Institute of Tropical Medicine, University of São Paulo, Brazil (E. Sabino) $1 https://orcid.org/0000000326235126
700    1_
$a Giatti, Luana $u Department of Preventive Medicine, School of Medicine, and Hospital das Clínicas/Empresa Brasileira de Serviços Hospitalares (L.G., S.M.B.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil $1 https://orcid.org/0000000154542460
700    1_
$a Barreto, Sandhi M $u Department of Preventive Medicine, School of Medicine, and Hospital das Clínicas/Empresa Brasileira de Serviços Hospitalares (L.G., S.M.B.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil $1 https://orcid.org/0000000173837811
700    1_
$a Waks, Jonathan W $u Harvard-Thorndike Electrophysiology Institute (J.W.W.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA $1 https://orcid.org/0000000155605638
700    1_
$a Kramer, Daniel B $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology (D.B.K.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA $1 https://orcid.org/0000000342413586
700    1_
$a Mandic, Danilo $u Department of Electrical and Electronic Engineering (D.M.), Imperial College London, United Kingdom
700    1_
$a Peters, Nicholas S $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.) $1 https://orcid.org/0000000235818078
700    1_
$a O'Regan, Declan P $u Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom $1 https://orcid.org/0000000206910270
700    1_
$a Malik, Marek $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Department of Internal Medicine and Cardiology, University Hospital Brno and Masaryk University, Czech Republic (I.A., T.N., M.M.) $1 https://orcid.org/0000000229041223
700    1_
$a Ware, James S $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Medical Research Council Laboratory of Medical Sciences (K.A.M., E. Sieliwonczyk, D.P.O., J.S.W.), Imperial College London, United Kingdom $u Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom (J.S.W.) $1 https://orcid.org/0000000261105880
700    1_
$a Ribeiro, Antonio Luiz P $u Department of Internal Medicine, Faculdade de Medicina, and Telehealth Center and Cardiology Service, Hospital das Clínicas (A.L.P.R.), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil $1 https://orcid.org/0000000227400042
700    1_
$a Ng, Fu Siong $u National Heart and Lung Institute (A.S., K.A.M., L.P., N.B., M.G., E. Sieliwonczyk, K.P., M.A., J.Y.C., H.W., X.S., K.H., S.Z., D.B.K., N.S.P., M.M., J.S.W., F.S.N.), Imperial College London, United Kingdom $u Department of Cardiology, Imperial College Healthcare National Health Service Trust, London, United Kingdom (A.S., N.S.P., F.S.N.) $u Department of Cardiology, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom (F.S.N.) $1 https://orcid.org/0000000286814368
773    0_
$w MED00205665 $t Circulation. Cardiovascular quality and outcomes $x 1941-7705 $g Roč. 17, č. 12 (2024), s. e010602
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39540287 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104053 $b ABA008
999    __
$a ok $b bmc $g 2263110 $s 1239167
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 17 $c 12 $d e010602 $e 20241114 $i 1941-7705 $m Circulation. Cardiovascular quality and outcomes $n Circ Cardiovasc Qual Outcomes $x MED00205665
GRA    __
$a FS/CRTF/21/24183 $p British Heart Foundation $2 United Kingdom
GRA    __
$a MR/Y000803/1 $p Medical Research Council $2 United Kingdom
GRA    __
$a RG/F/22/110078 $p British Heart Foundation $2 United Kingdom
LZP    __
$a Pubmed-20250121

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...