-
Something wrong with this record ?
Histopathological biomarkers for predicting the tumour accumulation of nanomedicines
JN. May, JI. Moss, F. Mueller, SK. Golombek, I. Biancacci, L. Rizzo, AS. Elshafei, F. Gremse, R. Pola, M. Pechar, T. Etrych, S. Becker, C. Trautwein, RD. Bülow, P. Boor, R. Knuechel, S. von Stillfried, G. Storm, S. Puri, ST. Barry, V. Schulz, F....
Language English Country England, Great Britain
Document type Journal Article
Grant support
864121
European Research Council - International
331065168
Deutsche Forschungsgemeinschaft (German Research Foundation)
864121
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- MeSH
- Biomarkers metabolism MeSH
- Doxorubicin * therapeutic use analogs & derivatives MeSH
- Humans MeSH
- Tumor-Associated Macrophages metabolism MeSH
- Mice MeSH
- Biomarkers, Tumor metabolism MeSH
- Cell Line, Tumor MeSH
- Neoplasms * pathology metabolism drug therapy MeSH
- Nanomedicine * methods MeSH
- Polyethylene Glycols MeSH
- Machine Learning MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
Advanced Drug Delivery Pharmaceutical Sciences R and D AstraZeneca Macclesfield UK
Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf Aachen Germany
Department of Biomaterials Science and Technology University of Twente Enschede the Netherlands
Department of Pharmaceutics Utrecht University Utrecht the Netherlands
Early TDE Discovery Oncology R and D AstraZeneca Cambridge UK
Fraunhofer Institute for Digital Medicine MEVIS Aachen Germany
Institute for Experimental Molecular Imaging University Hospital RWTH Aachen Aachen Germany
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czech Republic
Institute of Pathology University Hospital RWTH Aachen Aachen Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25003746
- 003
- CZ-PrNML
- 005
- 20250206104651.0
- 007
- ta
- 008
- 250121s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41551-024-01197-4 $2 doi
- 035 __
- $a (PubMed)38589466
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a May, Jan-Niklas $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000303276267
- 245 10
- $a Histopathological biomarkers for predicting the tumour accumulation of nanomedicines / $c JN. May, JI. Moss, F. Mueller, SK. Golombek, I. Biancacci, L. Rizzo, AS. Elshafei, F. Gremse, R. Pola, M. Pechar, T. Etrych, S. Becker, C. Trautwein, RD. Bülow, P. Boor, R. Knuechel, S. von Stillfried, G. Storm, S. Puri, ST. Barry, V. Schulz, F. Kiessling, MB. Ashford, T. Lammers
- 520 9_
- $a The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a doxorubicin $x terapeutické užití $x analogy a deriváty $7 D004317
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a nanomedicína $x metody $7 D050997
- 650 _2
- $a myši $7 D051379
- 650 12
- $a nádory $x patologie $x metabolismus $x farmakoterapie $7 D009369
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a nádorové biomarkery $x metabolismus $7 D014408
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a makrofágy spojené s nádory $x metabolismus $7 D000084582
- 650 _2
- $a biologické markery $x metabolismus $7 D015415
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a polyethylenglykoly $7 D011092
- 650 _2
- $a xenogenní modely - testy protinádorové aktivity $7 D023041
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Moss, Jennifer I $u Early TDE Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
- 700 1_
- $a Mueller, Florian $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000294964710
- 700 1_
- $a Golombek, Susanne K $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a Biancacci, Ilaria $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a Rizzo, Larissa $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a Elshafei, Asmaa Said $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a Gremse, Felix $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Gremse-IT GmbH, Aachen, Germany
- 700 1_
- $a Pola, Robert $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Pechar, Michal $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Etrych, Tomáš $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000159085182 $7 xx0068504
- 700 1_
- $a Becker, Svea $u Clinic for Gastroenterology, Metabolic Disorders, and Internal Intensive Medicine, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a Trautwein, Christian $u Clinic for Gastroenterology, Metabolic Disorders, and Internal Intensive Medicine, University Hospital RWTH Aachen, Aachen, Germany $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $1 https://orcid.org/0000000327628247
- 700 1_
- $a Bülow, Roman D $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000285277353
- 700 1_
- $a Boor, Peter $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000199214284 $7 xx0323557
- 700 1_
- $a Knuechel, Ruth $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
- 700 1_
- $a von Stillfried, Saskia $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000252608494
- 700 1_
- $a Storm, Gert $u Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands $u Department of Biomaterials, Science and Technology, University of Twente, Enschede, the Netherlands $u Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- 700 1_
- $a Puri, Sanyogitta $u Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
- 700 1_
- $a Barry, Simon T $u Early TDE Discovery, Oncology R&D, AstraZeneca, Cambridge, UK $1 https://orcid.org/0000000285110588
- 700 1_
- $a Schulz, Volkmar $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany $u Physics Institute III B, RWTH Aachen University, Aachen, Germany
- 700 1_
- $a Kiessling, Fabian $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany $1 https://orcid.org/0000000273410399
- 700 1_
- $a Ashford, Marianne B $u Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK $1 https://orcid.org/0000000153014607
- 700 1_
- $a Lammers, Twan $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany. tlammers@ukaachen.de $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany. tlammers@ukaachen.de $1 https://orcid.org/0000000210906805
- 773 0_
- $w MED00209449 $t Nature biomedical engineering $x 2157-846X $g Roč. 8, č. 11 (2024), s. 1366-1378
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38589466 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206104646 $b ABA008
- 999 __
- $a ok $b bmc $g 2263491 $s 1239753
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 8 $c 11 $d 1366-1378 $e 20240408 $i 2157-846X $m Nature biomedical engineering $n Nat Biomed Eng $x MED00209449
- GRA __
- $a 864121 $p European Research Council $2 International
- GRA __
- $a 331065168 $p Deutsche Forschungsgemeinschaft (German Research Foundation)
- GRA __
- $a 864121 $p EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- LZP __
- $a Pubmed-20250121