Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Histopathological biomarkers for predicting the tumour accumulation of nanomedicines

JN. May, JI. Moss, F. Mueller, SK. Golombek, I. Biancacci, L. Rizzo, AS. Elshafei, F. Gremse, R. Pola, M. Pechar, T. Etrych, S. Becker, C. Trautwein, RD. Bülow, P. Boor, R. Knuechel, S. von Stillfried, G. Storm, S. Puri, ST. Barry, V. Schulz, F....

. 2024 ; 8 (11) : 1366-1378. [pub] 20240408

Language English Country England, Great Britain

Document type Journal Article

Grant support
864121 European Research Council - International
331065168 Deutsche Forschungsgemeinschaft (German Research Foundation)
864121 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25003746
003      
CZ-PrNML
005      
20250206104651.0
007      
ta
008      
250121s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41551-024-01197-4 $2 doi
035    __
$a (PubMed)38589466
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a May, Jan-Niklas $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000303276267
245    10
$a Histopathological biomarkers for predicting the tumour accumulation of nanomedicines / $c JN. May, JI. Moss, F. Mueller, SK. Golombek, I. Biancacci, L. Rizzo, AS. Elshafei, F. Gremse, R. Pola, M. Pechar, T. Etrych, S. Becker, C. Trautwein, RD. Bülow, P. Boor, R. Knuechel, S. von Stillfried, G. Storm, S. Puri, ST. Barry, V. Schulz, F. Kiessling, MB. Ashford, T. Lammers
520    9_
$a The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
650    _2
$a zvířata $7 D000818
650    12
$a doxorubicin $x terapeutické užití $x analogy a deriváty $7 D004317
650    _2
$a lidé $7 D006801
650    12
$a nanomedicína $x metody $7 D050997
650    _2
$a myši $7 D051379
650    12
$a nádory $x patologie $x metabolismus $x farmakoterapie $7 D009369
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a nádorové biomarkery $x metabolismus $7 D014408
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a makrofágy spojené s nádory $x metabolismus $7 D000084582
650    _2
$a biologické markery $x metabolismus $7 D015415
650    _2
$a strojové učení $7 D000069550
650    _2
$a polyethylenglykoly $7 D011092
650    _2
$a xenogenní modely - testy protinádorové aktivity $7 D023041
655    _2
$a časopisecké články $7 D016428
700    1_
$a Moss, Jennifer I $u Early TDE Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
700    1_
$a Mueller, Florian $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000294964710
700    1_
$a Golombek, Susanne K $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a Biancacci, Ilaria $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a Rizzo, Larissa $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a Elshafei, Asmaa Said $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a Gremse, Felix $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Gremse-IT GmbH, Aachen, Germany
700    1_
$a Pola, Robert $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Pechar, Michal $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Etrych, Tomáš $u Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000159085182 $7 xx0068504
700    1_
$a Becker, Svea $u Clinic for Gastroenterology, Metabolic Disorders, and Internal Intensive Medicine, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a Trautwein, Christian $u Clinic for Gastroenterology, Metabolic Disorders, and Internal Intensive Medicine, University Hospital RWTH Aachen, Aachen, Germany $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $1 https://orcid.org/0000000327628247
700    1_
$a Bülow, Roman D $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000285277353
700    1_
$a Boor, Peter $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000199214284 $7 xx0323557
700    1_
$a Knuechel, Ruth $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
700    1_
$a von Stillfried, Saskia $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany $1 https://orcid.org/0000000252608494
700    1_
$a Storm, Gert $u Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands $u Department of Biomaterials, Science and Technology, University of Twente, Enschede, the Netherlands $u Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
700    1_
$a Puri, Sanyogitta $u Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
700    1_
$a Barry, Simon T $u Early TDE Discovery, Oncology R&D, AstraZeneca, Cambridge, UK $1 https://orcid.org/0000000285110588
700    1_
$a Schulz, Volkmar $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany $u Physics Institute III B, RWTH Aachen University, Aachen, Germany
700    1_
$a Kiessling, Fabian $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany $u Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany $1 https://orcid.org/0000000273410399
700    1_
$a Ashford, Marianne B $u Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK $1 https://orcid.org/0000000153014607
700    1_
$a Lammers, Twan $u Institute for Experimental Molecular Imaging, University Hospital RWTH Aachen, Aachen, Germany. tlammers@ukaachen.de $u Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Aachen, Germany. tlammers@ukaachen.de $1 https://orcid.org/0000000210906805
773    0_
$w MED00209449 $t Nature biomedical engineering $x 2157-846X $g Roč. 8, č. 11 (2024), s. 1366-1378
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38589466 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206104646 $b ABA008
999    __
$a ok $b bmc $g 2263491 $s 1239753
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 8 $c 11 $d 1366-1378 $e 20240408 $i 2157-846X $m Nature biomedical engineering $n Nat Biomed Eng $x MED00209449
GRA    __
$a 864121 $p European Research Council $2 International
GRA    __
$a 331065168 $p Deutsche Forschungsgemeinschaft (German Research Foundation)
GRA    __
$a 864121 $p EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
LZP    __
$a Pubmed-20250121

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...