Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein

. 2020 Dec ; 16 (12) : e1009100. [epub] 20201202

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33264373
Odkazy

PubMed 33264373
PubMed Central PMC7735635
DOI 10.1371/journal.ppat.1009100
PII: PPATHOGENS-D-20-01471
Knihovny.cz E-zdroje

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.

Zobrazit více v PubMed

Coronaviridae Study Group of the International Committee on Taxonomy of V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–44. 10.1038/s41564-020-0695-z PubMed DOI PMC

Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924 10.1016/j.ijantimicag.2020.105924 PubMed DOI PMC

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell host & microbe. 2020;27(3):325–8. 10.1016/j.chom.2020.02.001 . PubMed DOI PMC

Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Advances in virus research. 2016;96:59–126. 10.1016/bs.aivir.2016.08.008 . PubMed DOI PMC

Hogue BG, Machamer CE. Coronavirus Structural Proteins and Virus Assembly. Nidoviruses. 2008:179–200. PubMed PMID: WOS:000277990400013.

Escors D, Camafeita E, Ortego J, Laude H, Enjuanes L. Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. Journal of virology. 2001;75(24):12228–40. 10.1128/JVI.75.24.12228-12240.2001 PubMed DOI PMC

Kuo L, Koetzner CA, Hurst KR, Masters PS. Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein. Journal of virology. 2014;88(8):4451–65. 10.1128/JVI.03866-13 PubMed DOI PMC

Masters PS. Coronavirus genomic RNA packaging. Virology. 2019;537:198–207. 10.1016/j.virol.2019.08.031 PubMed DOI PMC

Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein—forms and functions. Antiviral research. 2014;103:39–50. 10.1016/j.antiviral.2013.12.009 . PubMed DOI PMC

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'meara MJ, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. BioRxiv. 2020. 10.1101/2020.03.22.002386 PubMed DOI PMC

Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry. 2004;43(20):6059–63. 10.1021/bi036155b . PubMed DOI

Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. Journal of virology. 2007;81(8):3913–21. 10.1128/JVI.02236-06 PubMed DOI PMC

Jayaram H, Fan H, Bowman BR, Ooi A, Jayaram J, Collisson EW, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. Journal of virology. 2006;80(13):6612–20. 10.1128/JVI.00157-06 PubMed DOI PMC

Fan H, Ooi A, Tan YW, Wang S, Fang S, Liu DX, et al. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure. 2005;13(12):1859–68. 10.1016/j.str.2005.08.021 PubMed DOI PMC

Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm Sin B. 2020;10(7):1228–38. 10.1016/j.apsb.2020.04.009 PubMed DOI PMC

Grossoehme NE, Li L, Keane SC, Liu P, Dann CE 3rd, Leibowitz JL, et al. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. Journal of molecular biology. 2009;394(3):544–57. 10.1016/j.jmb.2009.09.040 PubMed DOI PMC

Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society. 2003;125(7):1731–7. 10.1021/ja026939x . PubMed DOI

Harjes E, Harjes S, Wohlgemuth S, Muller KH, Krieger E, Herrmann C, et al. GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Structure. 2006;14(5):881–8. 10.1016/j.str.2006.03.008 . PubMed DOI

Sheng J, Larsen A, Heuberger BD, Blain JC, Szostak JW. Crystal structure studies of RNA duplexes containing s(2)U:A and s(2)U:U base pairs. Journal of the American Chemical Society. 2014;136(39):13916–24. 10.1021/ja508015a PubMed DOI PMC

Wilkinson IC, Hall CJ, Veverka V, Shi JY, Muskett FW, Stephens PE, et al. High resolution NMR-based model for the structure of a scFv-IL-1beta complex: potential for NMR as a key tool in therapeutic antibody design and development. The Journal of biological chemistry. 2009;284(46):31928–35. 10.1074/jbc.M109.025304 PubMed DOI PMC

Chen IJ, Yuann JM, Chang YM, Lin SY, Zhao J, Perlman S, et al. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein. Biochimica et biophysica acta. 2013;1834(6):1054–62. 10.1016/j.bbapap.2013.03.003 PubMed DOI PMC

Szelazek B, Kabala W, Kus K, Zdzalik M, Twarda-Clapa A, Golik P, et al. Structural Characterization of Human Coronavirus NL63 N Protein. Journal of virology. 2017;91(11). 10.1128/JVI.02503-16 PubMed DOI PMC

Chang CK, Hsu YL, Chang YH, Chao FA, Wu MC, Huang YS, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. Journal of virology. 2009;83(5):2255–64. 10.1128/JVI.02001-08 PubMed DOI PMC

Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and biophysical research communications. 2020;527(3):618–23. 10.1016/j.bbrc.2020.04.136 PubMed DOI PMC

Renshaw PS, Veverka V, Kelly G, Frenkiel TA, Williamson RA, Gordon SV, et al. Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6. Journal of biomolecular NMR. 2004;30(2):225–6. 10.1023/B:JNMR.0000048852.40853.5c . PubMed DOI

Veverka V, Lennie G, Crabbe T, Bird I, Taylor RJ, Carr MD. NMR assignment of the mTOR domain responsible for rapamycin binding. Journal of biomolecular NMR. 2006;36 Suppl 1:3 10.1007/s10858-005-4324-1 . PubMed DOI

Lee W, Bahrami A, Dashti HT, Eghbalnia HR, Tonelli M, Westler WM, et al. I-PINE web server: an integrative probabilistic NMR assignment system for proteins. Journal of biomolecular NMR. 2019;73(5):213–22. 10.1007/s10858-019-00255-3 PubMed DOI PMC

Lee W, Tonelli M, Markley JL. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015;31(8):1325–7. 10.1093/bioinformatics/btu830 PubMed DOI PMC

Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. Journal of molecular biology. 2002;319(1):209–27. 10.1016/s0022-2836(02)00241-3 . PubMed DOI

Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of biomolecular NMR. 2009;44(4):213–23. 10.1007/s10858-009-9333-z PubMed DOI PMC

Veverka V, Crabbe T, Bird I, Lennie G, Muskett FW, Taylor RJ, et al. Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene. 2008;27(5):585–95. 10.1038/sj.onc.1210693 . PubMed DOI

Rodrigues JP, Trellet M, Schmitz C, Kastritis P, Karaca E, Melquiond AS, et al. Clustering biomolecular complexes by residue contacts similarity. Proteins. 2012;80(7):1810–7. 10.1002/prot.24078 . PubMed DOI

Boura E, Silhan J, Herman P, Vecer J, Sulc M, Teisinger J, et al. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. The Journal of biological chemistry. 2007;282(11):8265–75. 10.1074/jbc.M605682200 . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace