A novel simulation-based analysis of a stochastic HIV model with the time delay using high order spectral collocation technique
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
38575653
PubMed Central
PMC10994949
DOI
10.1038/s41598-024-57073-3
PII: 10.1038/s41598-024-57073-3
Knihovny.cz E-resources
- Keywords
- HIV infection, Legendre-Gauss-Lobatto points, Mathematical delay model, Spectral method, Stability analysis, Stochastic effect,
- MeSH
- Models, Biological MeSH
- HIV Infections * MeSH
- HIV * MeSH
- Humans MeSH
- Computer Simulation MeSH
- Basic Reproduction Number MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The economic impact of Human Immunodeficiency Virus (HIV) goes beyond individual levels and it has a significant influence on communities and nations worldwide. Studying the transmission patterns in HIV dynamics is crucial for understanding the tracking behavior and informing policymakers about the possible control of this viral infection. Various approaches have been adopted to explore how the virus interacts with the immune system. Models involving differential equations with delays have become prevalent across various scientific and technical domains over the past few decades. In this study, we present a novel mathematical model comprising a system of delay differential equations to describe the dynamics of intramural HIV infection. The model characterizes three distinct cell sub-populations and the HIV virus. By incorporating time delay between the viral entry into target cells and the subsequent production of new virions, our model provides a comprehensive understanding of the infection process. Our study focuses on investigating the stability of two crucial equilibrium states the infection-free and endemic equilibriums. To analyze the infection-free equilibrium, we utilize the LaSalle invariance principle. Further, we prove that if reproduction is less than unity, the disease free equilibrium is locally and globally asymptotically stable. To ensure numerical accuracy and preservation of essential properties from the continuous mathematical model, we use a spectral scheme having a higher-order accuracy. This scheme effectively captures the underlying dynamics and enables efficient numerical simulations.
Department of Computer Science and Mathematics Lebanese American University Byblos Lebanon
Department of Mathematics University of Peshawar Peshawar KP 25000 Pakistan
IS Department College of Education King Saud University Riyadh Saudi Arabia
IT4Innovations VSB Technical University of Ostrava Ostrava Czech Republic
See more in PubMed
Balaji S, Chakraborty R, Aggarwal S. Neurological complications caused by human immunodeficiency virus (HIV) and associated opportunistic co-infections: a review on their diagnosis and therapeutic insights. CNS Neurol. Disord. Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord.) 2024;23(3):284–305. PubMed
Goga, A. et al. The impact of health programmes to prevent vertical transmission of HIV. Advances, emerging health challenges and research priorities for children exposed to or living with HIV: Perspectives from South Africa (2019). PubMed
Dieffenbach CW, Fauci AS. Thirty years of HIV and AIDS: Future challenges and opportunities. Ann. Intern. Med. 2011;154(11):766–771. doi: 10.7326/0003-4819-154-11-201106070-00345. PubMed DOI
Siettos CI, Russo L. Mathematical modeling of infectious disease dynamics. Virulence. 2013;4(4):295–306. doi: 10.4161/viru.24041. PubMed DOI PMC
Bentout S, Chekroun A, Kuniya T. Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria. AIMS Public Health. 2020;7(2):306. doi: 10.3934/publichealth.2020026. PubMed DOI PMC
Eaton JW, et al. HIV treatment as prevention: Systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012;9(7):e1001245. doi: 10.1371/journal.pmed.1001245. PubMed DOI PMC
Ahmed I, et al. Analysis of Caputo fractional-order model for COVID-19 with lockdown. Adv. Differ. Equ. 2020;2020(1):394. doi: 10.1186/s13662-020-02853-0. PubMed DOI PMC
Ullah S, et al. The dynamics of HIV/AIDS model with fractal-fractional Caputo derivative. Fractals. 2023;31(02):2340015. doi: 10.1142/S0218348X23400157. DOI
Chowell G, et al. Mathematical models to characterize early epidemic growth: A review. Phys. Life Rev. 2016;18:66–97. doi: 10.1016/j.plrev.2016.07.005. PubMed DOI PMC
Din A, Sabbar Y, Peng W. A novel stochastic Hepatitis B virus epidemic model with second-order multiplicative a-stable noise and real data. Acta Math. Sci. 2024;44(2):752–788. doi: 10.1007/s10473-024-0220-1. DOI
Spencer, S. Stochastic epidemic models for emerging diseases (Doctoral dissertation, University of Nottingham) (2008).
Anderson RM, et al. Epidemiology, transmission dynamics and control of SARS: The 2002–2003 epidemic. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004;359(1447):1091–1105. doi: 10.1098/rstb.2004.1490. PubMed DOI PMC
Banks HT, Bortz DM, Holte SE. Incorporation of variability into the modeling of viral delays in HIV infection dynamics. Math. Biosci. 2003;183(1):63–91. doi: 10.1016/S0025-5564(02)00218-3. PubMed DOI
Madhav, N., Oppenheim, B., Gallivan, M., Mulembakani, P., Rubin, E., & Wolfe, N. Pandemics: risks, impacts, and mitigation. (2018). PubMed
Aral SO, Padian NS, Holmes KK. Advances in multilevel approaches to understanding the epidemiology and prevention of sexually transmitted infections and HIV: An overview. J. Infect. Dis. 2005;191(1):Supplement-1–S6. doi: 10.1086/425290. PubMed DOI
Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S, Hollingsworth TD, Isaac Newton Institute IDD Collaboration Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347(6227):aaa4339. doi: 10.1126/science.aaa4339. PubMed DOI PMC
Hébert-Dufresne L, Althouse BM, Scarpino SV, Allard A. Beyond R 0: Heterogeneity in secondary infections and probabilistic epidemic forecasting. J. R. Soc. Interface. 2020;17(172):20200393. doi: 10.1098/rsif.2020.0393. PubMed DOI PMC
Mode CJ, Sleeman CK. Stochastic Processes in Epidemiology: HIV/AIDS, Other Infectious Diseases and Computers. World Scientific; 2000.
Gul N, et al. Transmission dynamic of stochastic hepatitis C model by spectral collocation method. Comput. Methods Biomech. Biomed. Eng. 2022;25(5):578–592. doi: 10.1080/10255842.2021.1970143. PubMed DOI
Ali A, et al. On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method. Math. Methods Appl. Sci. 2022;45(13):8230–8246. doi: 10.1002/mma.8183. DOI
Khan SU, Ali I. Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equation. AIP Adv. 2018;8(3):035301. doi: 10.1063/1.5016680. DOI
Khan SU, Ali M, Ali I. A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis. J. Adv. Differ. Equ. 2019;1:161. doi: 10.1186/s13662-019-2096-2. DOI
Soufiane B, Touaoula TM. Global analysis of an infection age model with a class of nonlinear incidence rates. J. Math. Anal. Appl. 2016;434(2):1211–1239. doi: 10.1016/j.jmaa.2015.09.066. DOI
Baba IA, Yusuf A, Nisar KS, Abdel-Aty AH, Nofal TA. Mathematical model to assess the imposition of lockdown during COVID-19 pandemic. Results Phys. 2021;20:103716. doi: 10.1016/j.rinp.2020.103716. PubMed DOI PMC
Baba IA, Rihan FA. A fractional-order model with different strains of COVID-19. Phys. A Stat. Mech. Appl. 2022;603:127813. doi: 10.1016/j.physa.2022.127813. PubMed DOI PMC
Ibrahim A, et al. Modeling the dynamics of COVID-19 with real data from Thailand. Sci. Rep. 2023;13(1):13082. doi: 10.1038/s41598-023-39798-9. PubMed DOI PMC
Beauchemin CAA, Handel A. A review of mathematical models of influenza A infections within a host or cell culture: Lessons learned and challenges ahead. BMC Public Health. 2011;11(1):1–15. PubMed PMC
Mahroug F, Bentout S. Dynamics of a diffusion dispersal viral epidemic model with age infection in a spatially heterogeneous environment with general nonlinear function. Math. Methods Appl. Sci. 2023;46(14):14983–15010. doi: 10.1002/mma.9357. DOI
Perelson AS. Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2002;2:28. doi: 10.1038/nri700. PubMed DOI
Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42:599–653. doi: 10.1137/S0036144500371907. DOI
Baltes A, Akpinar F, Inankur B, Yin J. Inhibition of infection spread by co-transmitted defective interfering particles. PLoS ONE. 2017;12:e0184029. doi: 10.1371/journal.pone.0184029. PubMed DOI PMC
Liao LE, Iwami S, Beauchemin CA. (In) validating experimentally derived knowledge about influenza A defective interfering particles. J. R. Soc. Interface. 2016;13:20160412. doi: 10.1098/rsif.2016.0412. PubMed DOI PMC
Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123. doi: 10.1038/373123a0. PubMed DOI
Platt EJ, Kozak SL, Durnin JP, Hope TJ, Kabat D. Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions. J. Virol. 2010;84:3106–3110. doi: 10.1128/JVI.01958-09. PubMed DOI PMC
Arenas AJ, González-Parra G, Naranjo JJ, Cogollo M, De La Espriella N. Mathematical analysis and numerical solution of a model of HIV with a discrete time delay. Mathematics. 2021;9(3):257. doi: 10.3390/math9030257. DOI
Khan, S. U. & Ali, I. Numerical analysis of stochastic SIR model by Legendre spectral collocation method. In Advances in Mechanical Engineering, vol. 11, 7, (SAGE Publications, 2019).
Ali I, Khan SU. Analysis of stochastic delayed SIRS model with exponential birth and saturated incidence rate. Chaos Solitons Fract. 2020;138:110008. doi: 10.1016/j.chaos.2020.110008. DOI
Khan SU, Ali I. Convergence and error analysis of a spectral collocation method for solving system of nonlinear Fredholm integral equations of second kind. Comput. Appl. Math. 2019;38(3):125. doi: 10.1007/s40314-019-0897-2. DOI
Khan SU, Ali I. Applications of Legendre spectral collocation method for solving system of time delay differential equations. Adv. Mech. Eng. 2020;12(6):1687814020922113. doi: 10.1177/1687814020922113. DOI
Algehyne EA, Khan FU, Khan SU, Jamshed W, Tag El Din ESM. Dynamics of stochastic zika virus with treatment class in human population via spectral method. Symmetry. 2022;14(10):2137. doi: 10.3390/sym14102137. DOI
Ali I, Khan SU. A dynamic competition analysis of stochastic fractional differential equation arising in finance via pseudospectral method. Mathematics. 2023;11(6):1328. doi: 10.3390/math11061328. DOI
Song, Y. et al.Advances in Difference Eqnarrays2018, 293 (2018).