Immune signature of pheochromocytoma and paraganglioma in context of neuroendocrine neoplasms associated with prognosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ZIA BC011286
Intramural NIH HHS - United States
ZIA HD008735
Intramural NIH HHS - United States
ZIC BC010991
Intramural NIH HHS - United States
PubMed
36370152
PubMed Central
PMC10683554
DOI
10.1007/s12020-022-03218-1
PII: 10.1007/s12020-022-03218-1
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Immunologic signature, Metastasis, Paraganglioma, Pheochromocytoma,
- MeSH
- feochromocytom * genetika MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory nadledvin * genetika MeSH
- nádory slinivky břišní MeSH
- nádory žaludku MeSH
- neuroendokrinní nádory * genetika MeSH
- paragangliom * genetika MeSH
- prognóza MeSH
- střevní nádory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-carboxyphenylglyoxal MeSH Prohlížeč
- nádorové biomarkery MeSH
PURPOSE: To understand prognostic immune cell infiltration signatures in neuroendocrine neoplasms (NENs), particularly pheochromocytoma and paraganglioma (PCPG), we analyzed tumor transcriptomic data from The Cancer Genome Atlas (TCGA) and other published tumor transcriptomic data of NENs. METHODS: We used CIBERSORT to infer immune cell infiltrations from bulk tumor transcriptomic data from PCPGs, in comparison to gastroenteropancreatic neuroendocrine tumors (GEPNETs) and small cell lung carcinomas (SCLCs). PCPG immune signature was validated with NanoString immune panel in an independent cohort. Unsupervised clustering of the immune infiltration scores from CIBERSORT was used to find immune clusters. A prognostic immune score model for PCPGs and the other NENs were calculated as a linear combination of the estimated infiltration of activated CD8+/CD4+ T cells, activated NK cells, and M0 and M2 macrophages. RESULTS: In PCPGs, we found five dominant immune clusters, associated with M2 macrophages, monocytes, activated NK cells, M0 macrophages and regulatory T cells, and CD8+/CD4+ T cells respectively. Non-metastatic tumors were associated with activated NK cells and metastatic tumors were associated with M0 macrophages and regulatory T cells. In GEPNETs and SCLCs, M0 macrophages and regulatory T cells were associated with unfavorable outcomes and features, such as metastasis and high-grade tumors. The prognostic immune score model for PCPGs and the NENs could predict non-aggressive and non-metastatic diseases. In PCPGs, the immune score was also an independent predictor of metastasis-free survival in a multivariate Cox regression analysis. CONCLUSION: The transcriptomic immune signature in PCPG correlates with clinical features like metastasis and prognosis.
Department of Medical Sciences Uppsala University Akademiska Sjukhuset ing 78 75185 Uppsala Sweden
European Center for Research in Medical Imaging Aix Marseille University Marseille France
Zobrazit více v PubMed
Thorsson V, Gibbs DL, Brown SD et al. The Immune Landscape of Cancer. Immunity 48(4), 812–30.e14 (2018). 10.1016/j.immuni.2018.03.023 PubMed DOI PMC
Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH, Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8), 1093–1102 (2010). 10.1038/onc.2009.416 PubMed DOI
Fridman WH, Galon J, Dieu-Nosjean MC et al. Immune infiltration in human cancer: prognostic significance and disease control. Curr. Top. Microbiol. Immunol. 344, 1–24 (2011). 10.1007/82_2010_46 PubMed DOI
Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102(51), 18538–18543 (2005). 10.1073/pnas.0509182102 PubMed DOI PMC
Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M et al. A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients. Cancer Immunol. Res 7(7), 1162–1174 (2019). 10.1158/2326-6066.CIR-18-0500 PubMed DOI
Truxova I, Kasikova L, Hensler M et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J. Immunother. Cancer 6(1), 139 (2018). 10.1186/s40425-018-0446-3 PubMed DOI PMC
Wouters MCA, Nelson BH, Prognostic Significance of Tumor-Infiltrating B Cells and Plasma Cells in Human Cancer. Clin. Cancer Res. 24(24), 6125–6135 (2018). 10.1158/1078-0432.CCR-18-1481 PubMed DOI
Komohara Y, Hasita H, Ohnishi K et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 102(7), 1424–1431 (2011). 10.1111/j.1349-7006.2011.01945.x PubMed DOI
Campbell MJ, Tonlaar NY, Garwood ER et al. Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res. Treat. 128(3), 703–711 (2011). 10.1007/s10549-010-1154-y PubMed DOI PMC
Newman AM, Liu CL, Green MR et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015). 10.1038/nmeth.3337 PubMed DOI PMC
Bailey P, Chang DK, Nones K et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592), 47–52 (2016). 10.1038/nature16965 PubMed DOI
Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG, Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types. J. Natl Cancer Inst. 108(11) (2016) 10.1093/jnci/djw144 PubMed DOI PMC
Fishbein L, Leshchiner I, Walter V et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 31(2), 181–193 (2017). 10.1016/j.ccell.2017.01.001 PubMed DOI PMC
Eisenhofer G, Lenders JWM, Timmers H et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin. Chem. 57(3), 411–420 (2011) PubMed PMC
Eisenhofer G, Pacak K, Huynh T-T et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr.-Relat. Cancer 18(1), 97–111 (2011) PubMed PMC
King KS, Prodanov T, Kantorovich V et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J. Clin. Oncol. 29(31), 4137–4142 (2011). 10.1200/JCO.2011.34.6353 PubMed DOI PMC
Turkova H, Prodanov T, Maly M et al. Characteristics and Outcomes of Metastatic Sdhb and Sporadic Pheochromocytoma/Paraganglioma: An National Institutes of Health Study. Endocr. Pr 22(3), 302–314 (2016). 10.4158/EP15725.OR PubMed DOI PMC
Amar L, Bertherat J, Baudin E et al. Genetic testing in pheochromocytoma or functional paraganglioma. J. Clin. Oncol. 23(34), 8812–8818 (2005). 10.1200/JCO.2005.03.1484 PubMed DOI
Ben Aim L, Pigny P, Castro-Vega LJ et al. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J. Med. Genet. 56(8), 513–520 (2019). 10.1136/jmedgenet-2018-105714 PubMed DOI
Ayala-Ramirez M, Feng L, Johnson MM et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 96(3), 717–725 (2011) PubMed
Welander J, Soderkvist P, Gimm O, Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr.-Relat. Cancer 18(6), R253–R276 (2011) PubMed
Eisenhofer G, Lenders JWM, Siegert G et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer 48(11), 1739–1749 (2012) PubMed PMC
Turkova H, Prodanov T, Maly M et al. Characteristics and outcomes of metastatic sdhb and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health Study. Endocr. Pr 22(3), 302–314 (2016) PubMed PMC
Job S, Draskovic I, Burnichon N et al. Telomerase Activation and ATRX Mutations Are Independent Risk Factors for Metastatic Pheochromocytoma and Paraganglioma. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res 25(2), 760–770 (2019) PubMed
Fishbein L, Khare S, Wubbenhorst B et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat. Commun. 6, 6140 (2015) PubMed PMC
Zelinka T, Eisenhofer G, Pacak K, Pheochromocytoma as a catecholamine producing tumor: implications for clinical practice. Stress 10(2), 195–203 (2007). 10.1080/10253890701395896 PubMed DOI
Crona J, Lamarca A, Ghosal S, Welin S, Skogseid B, Pacak K, Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr. Relat. Cancer 26(5), 539–550 (2019). 10.1530/ERC-19-0024 PubMed DOI PMC
Hescot S, Curras-Freixes M, Deutschbein T et al. Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. J. Clin. Endocrinol. Metab. 104(6), 2367–2374 (2019). 10.1210/jc.2018-01968 PubMed DOI
Dwight T, Flynn A, Amarasinghe K et al. TERT structural rearrangements in metastatic pheochromocytomas. Endocr. Relat. Cancer 25(1), 1–9 (2018). 10.1530/ERC-17-0306 PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010). 10.1093/bioinformatics/btp616 PubMed DOI PMC
Alvarez MJ, Subramaniam PS, Tang LH et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nat. Genet. 50(7), 979–989 (2018). 10.1038/s41588-018-0138-4 PubMed DOI PMC
George J, Lim JS, Jang SJ et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563), 47–53 (2015). 10.1038/nature14664 PubMed DOI PMC
Flynn A, Benn D, Clifton-Bligh R et al. The genomic landscape of phaeochromocytoma. J. Pathol. 236(1), 78–89 (2015). 10.1002/path.4503 PubMed DOI
Tufton N, Hearnden RJ, Berney DM, Drake WM, Parvanta L, Chapple JP, Akker SA, The immune cell infiltrate in the tumour microenvironment of phaeochromocytomas and paragangliomas. Endocr. Relat. Cancer ERC-22–0020 (2022). 10.1530/ERC-22-0020 PubMed DOI PMC
Harlin H, Meng Y, Peterson AC et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 69(7), 3077–3085 (2009). 10.1158/0008-5472.CAN-08-2281 PubMed DOI PMC
Allen F, Bobanga ID, Rauhe P et al. CCL3 augments tumor rejection and enhances CD8(+) T cell infiltration through NK and CD103(+) dendritic cell recruitment via IFNgamma. Oncoimmunology 7(3), e1393598 (2018). 10.1080/2162402X.2017.1393598 PubMed DOI PMC
Chen CX, Chen DN, Sun XL et al. Identification of vital prognostic genes related to tumor microenvironment in pheochromocytoma and paraganglioma based on weighted gene co-expression network analysis. Aging (Albany NY) 13(7), 9976–9990 (2021). 10.18632/aging.202754 PubMed DOI PMC
Kim S, Kim A, Shin JY et al. The tumor immune micro environmental analysis of 2,033 transcriptomes across 7 cancer types. Sci. Rep. 10(1), 9536 (2020). 10.1038/s41598-020-66449-0 PubMed DOI PMC
Galon J, Mlecnik B, Bindea G et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 232(2), 199–209 (2014) PubMed PMC
Role of B cells in intratumoral MBTA immunotherapy of murine pheochromocytoma model