-
Je něco špatně v tomto záznamu ?
Interictal stereo-electroencephalography features below 45 Hz are sufficient for correct localization of the epileptogenic zone and postsurgical outcome prediction
P. Klimes, P. Nejedly, V. Hrtonova, J. Cimbalnik, V. Travnicek, M. Pail, L. Peter-Derex, J. Hall, R. Pana, J. Halamek, P. Jurak, M. Brazdil, B. Frauscher
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
22-28784S
Grantová Agentura České Republiky
RVO:68081731
The Czech Academy of Sciences
NU22-08-00278
Ministerstvo Zdravotnictví Ceské Republiky
LM2023053
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39180407
DOI
10.1111/epi.18081
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- epilepsie chirurgie patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- refrakterní epilepsie chirurgie patofyziologie diagnóza MeSH
- stereotaktické techniky MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.
Department of Biomedical Engineering Duke Pratt School of Engineering Durham North Carolina USA
Department of Neurology Duke University Medical Center Durham North Carolina USA
Institute of Scientific Instruments of the CAS Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Lyon Neuroscience Research Center INSERM U1028 CNRS UMR5292 Lyon France
Montreal Neurological Hospital McGill University Montreal Quebec Canada
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004027
- 003
- CZ-PrNML
- 005
- 20250206105052.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/epi.18081 $2 doi
- 035 __
- $a (PubMed)39180407
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Klimes, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000202329518
- 245 10
- $a Interictal stereo-electroencephalography features below 45 Hz are sufficient for correct localization of the epileptogenic zone and postsurgical outcome prediction / $c P. Klimes, P. Nejedly, V. Hrtonova, J. Cimbalnik, V. Travnicek, M. Pail, L. Peter-Derex, J. Hall, R. Pana, J. Halamek, P. Jurak, M. Brazdil, B. Frauscher
- 520 9_
- $a OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mladý dospělý $7 D055815
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a výsledek terapie $7 D016896
- 650 _2
- $a stereotaktické techniky $7 D013238
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a epilepsie $x chirurgie $x patofyziologie $x diagnóza $7 D004827
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a refrakterní epilepsie $x chirurgie $x patofyziologie $x diagnóza $7 D000069279
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Nejedly, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Hrtonova, Valentina $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
- 700 1_
- $a Cimbalnik, Jan $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Travnicek, Vojtech $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $1 https://orcid.org/0000000258466722
- 700 1_
- $a Pail, Martin $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Peter-Derex, Laure $u Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, Lyon, France $u Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France $1 https://orcid.org/0000000299389639
- 700 1_
- $a Hall, Jeffery $u Montreal Neurological Hospital, McGill University, Montreal, Quebec, Canada $1 https://orcid.org/0000000184038986
- 700 1_
- $a Pana, Raluca $u Montreal Neurological Hospital, McGill University, Montreal, Quebec, Canada
- 700 1_
- $a Halamek, Josef $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
- 700 1_
- $a Jurak, Pavel $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
- 700 1_
- $a Brazdil, Milan $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic $u Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000179792343 $7 mzk2004258674
- 700 1_
- $a Frauscher, Birgit $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada $u Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA $1 https://orcid.org/0000000160641529
- 773 0_
- $w MED00001567 $t Epilepsia $x 1528-1167 $g Roč. 65, č. 10 (2024), s. 2935-2945
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39180407 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105047 $b ABA008
- 999 __
- $a ok $b bmc $g 2263647 $s 1240034
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 65 $c 10 $d 2935-2945 $e 20240824 $i 1528-1167 $m Epilepsia $n Epilepsia $x MED00001567
- GRA __
- $a 22-28784S $p Grantová Agentura České Republiky
- GRA __
- $a RVO:68081731 $p The Czech Academy of Sciences
- GRA __
- $a NU22-08-00278 $p Ministerstvo Zdravotnictví Ceské Republiky
- GRA __
- $a LM2023053 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a LX22NPO5107 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- LZP __
- $a Pubmed-20250121