Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Interictal stereo-electroencephalography features below 45 Hz are sufficient for correct localization of the epileptogenic zone and postsurgical outcome prediction

P. Klimes, P. Nejedly, V. Hrtonova, J. Cimbalnik, V. Travnicek, M. Pail, L. Peter-Derex, J. Hall, R. Pana, J. Halamek, P. Jurak, M. Brazdil, B. Frauscher

. 2024 ; 65 (10) : 2935-2945. [pub] 20240824

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25004027

Grantová podpora
22-28784S Grantová Agentura České Republiky
RVO:68081731 The Czech Academy of Sciences
NU22-08-00278 Ministerstvo Zdravotnictví Ceské Republiky
LM2023053 Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy

OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25004027
003      
CZ-PrNML
005      
20250206105052.0
007      
ta
008      
250121s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/epi.18081 $2 doi
035    __
$a (PubMed)39180407
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Klimes, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $1 https://orcid.org/0000000202329518
245    10
$a Interictal stereo-electroencephalography features below 45 Hz are sufficient for correct localization of the epileptogenic zone and postsurgical outcome prediction / $c P. Klimes, P. Nejedly, V. Hrtonova, J. Cimbalnik, V. Travnicek, M. Pail, L. Peter-Derex, J. Hall, R. Pana, J. Halamek, P. Jurak, M. Brazdil, B. Frauscher
520    9_
$a OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.
650    _2
$a lidé $7 D006801
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a dospělí $7 D000328
650    _2
$a mladý dospělý $7 D055815
650    _2
$a mladiství $7 D000293
650    _2
$a výsledek terapie $7 D016896
650    _2
$a stereotaktické techniky $7 D013238
650    _2
$a lidé středního věku $7 D008875
650    _2
$a epilepsie $x chirurgie $x patofyziologie $x diagnóza $7 D004827
650    _2
$a dítě $7 D002648
650    _2
$a refrakterní epilepsie $x chirurgie $x patofyziologie $x diagnóza $7 D000069279
655    _2
$a časopisecké články $7 D016428
700    1_
$a Nejedly, Petr $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic
700    1_
$a Hrtonova, Valentina $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
700    1_
$a Cimbalnik, Jan $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Travnicek, Vojtech $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic $1 https://orcid.org/0000000258466722
700    1_
$a Pail, Martin $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic
700    1_
$a Peter-Derex, Laure $u Center for Sleep Medicine and Respiratory Diseases, Lyon University Hospital, Lyon 1 University, Lyon, France $u Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR5292, Lyon, France $1 https://orcid.org/0000000299389639
700    1_
$a Hall, Jeffery $u Montreal Neurological Hospital, McGill University, Montreal, Quebec, Canada $1 https://orcid.org/0000000184038986
700    1_
$a Pana, Raluca $u Montreal Neurological Hospital, McGill University, Montreal, Quebec, Canada
700    1_
$a Halamek, Josef $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
700    1_
$a Jurak, Pavel $u Institute of Scientific Instruments of the CAS, Brno, Czech Republic
700    1_
$a Brazdil, Milan $u Department of Neurology, Faculty of Medicine, Brno Epilepsy Center, St. Anne's University Hospital, Member of ERN-EpiCARE, Masaryk University, Brno, Czech Republic $u Behavioral and Social Neuroscience Research Group, CEITEC Central European Institute of Technology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000179792343 $7 mzk2004258674
700    1_
$a Frauscher, Birgit $u Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Quebec, Canada $u Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA $u Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA $1 https://orcid.org/0000000160641529
773    0_
$w MED00001567 $t Epilepsia $x 1528-1167 $g Roč. 65, č. 10 (2024), s. 2935-2945
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39180407 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250121 $b ABA008
991    __
$a 20250206105047 $b ABA008
999    __
$a ok $b bmc $g 2263647 $s 1240034
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 65 $c 10 $d 2935-2945 $e 20240824 $i 1528-1167 $m Epilepsia $n Epilepsia $x MED00001567
GRA    __
$a 22-28784S $p Grantová Agentura České Republiky
GRA    __
$a RVO:68081731 $p The Czech Academy of Sciences
GRA    __
$a NU22-08-00278 $p Ministerstvo Zdravotnictví Ceské Republiky
GRA    __
$a LM2023053 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LX22NPO5107 $p Ministerstvo Školství, Mládeže a Tělovýchovy
LZP    __
$a Pubmed-20250121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...