-
Je něco špatně v tomto záznamu ?
The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1
K. Papouskova, J. Akinola, FJ. Ruiz-Castilla, JP. Morrissey, J. Ramos, H. Sychrova
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
CA18229
COST
Ministry of Education
University of Córdoba
720824
European Union
NLK
PubMed Central
od 2015
ProQuest Central
od 2003-03-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2003-03-01 do Před 1 rokem
Oxford Journals Open Access Collection
od 2001-04-01
PubMed
39363175
DOI
10.1093/femsyr/foae031
Knihovny.cz E-zdroje
- MeSH
- draslík * metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- genový knockout MeSH
- Kluyveromyces * genetika metabolismus růst a vývoj MeSH
- koncentrace vodíkových iontů MeSH
- membránové potenciály MeSH
- proteiny přenášející kationty * genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae * genetika metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004180
- 003
- CZ-PrNML
- 005
- 20250206110000.0
- 007
- ta
- 008
- 250121e20240109enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/femsyr/foae031 $2 doi
- 035 __
- $a (PubMed)39363175
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Papouskova, Klara $u Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague 4, Czechia
- 245 14
- $a The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1 / $c K. Papouskova, J. Akinola, FJ. Ruiz-Castilla, JP. Morrissey, J. Ramos, H. Sychrova
- 520 9_
- $a The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
- 650 12
- $a Kluyveromyces $x genetika $x metabolismus $x růst a vývoj $7 D007716
- 650 12
- $a draslík $x metabolismus $7 D011188
- 650 12
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $x růst a vývoj $7 D012441
- 650 12
- $a proteiny přenášející kationty $x genetika $x metabolismus $7 D027682
- 650 _2
- $a fungální proteiny $x genetika $x metabolismus $7 D005656
- 650 _2
- $a genový knockout $7 D055786
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a regulace genové exprese u hub $7 D015966
- 650 _2
- $a membránové potenciály $7 D008564
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Akinola, Joel $u School of Microbiology, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
- 700 1_
- $a Ruiz-Castilla, Francisco J $u Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, E-14071 Córdoba, Spain
- 700 1_
- $a Morrissey, John P $u School of Microbiology, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland $1 https://orcid.org/0000000179602001
- 700 1_
- $a Ramos, Jose $u Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, E-14071 Córdoba, Spain
- 700 1_
- $a Sychrova, Hana $u Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague 4, Czechia $1 https://orcid.org/0000000159675019 $7 xx0030590
- 773 0_
- $w MED00006483 $t FEMS yeast research $x 1567-1364 $g Roč. 24 (20240109)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39363175 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105956 $b ABA008
- 999 __
- $a ok $b bmc $g 2263735 $s 1240187
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 24 $c - $e 20240109 $i 1567-1364 $m FEMS yeast research $n FEMS Yeast Res $x MED00006483
- GRA __
- $a CA18229 $p COST
- GRA __
- $p Ministry of Education
- GRA __
- $p University of Córdoba
- GRA __
- $a 720824 $p European Union
- LZP __
- $a Pubmed-20250121