-
Something wrong with this record ?
DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology
OA. Attafi, D. Clementel, K. Kyritsis, E. Capriotti, G. Farrell, SC. Fragkouli, LJ. Castro, A. Hatos, T. Lenaerts, S. Mazurenko, S. Mozaffari, F. Pradelli, P. Ruch, C. Savojardo, P. Turina, F. Zambelli, D. Piovesan, AM. Monzon, F. Psomopoulos,...
Language English Country United States
Document type Journal Article
Grant support
CA21160
European Cooperation in Science and Technology
NLK
BioMedCentral Open Access
from 2012
Directory of Open Access Journals
from 2012
Free Medical Journals
from 2012
PubMed Central
from 2012
Europe PubMed Central
from 2012
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2012-01-01
Open Access Digital Library
from 2012-01-01
Oxford Journals Open Access Collection
from 2011
ROAD: Directory of Open Access Scholarly Resources
from 2012
- MeSH
- Databases, Factual MeSH
- Humans MeSH
- Registries * MeSH
- Reproducibility of Results MeSH
- Supervised Machine Learning * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
Artificial Intelligence Laboratory Vrije Universiteit Brussels Brussels 1050 Belgium
Department of Biology National and Kapodistrian University of Athens Athens 157 72 Greece
Department of Biomedical Sciences University of Padova Padova 35131 Italy
Department of Biosciences University of Milan Milan 20133 Italy
Department of Computational Biology University of Lausanne Lausanne 1015 Switzerland
Department of Information Engineering University of Padova Padova 35131 Italy
Department of Oncology Geneva University Hospitals Geneva 1205 Switzerland
Department of Pharmacy and Biotechnology University of Bologna Bologna 40126 Italy
ELIXIR Hub Hinxton Cambridge CB10 1SD UK
HES SO HEG Geneva Geneva 1227 Switzerland
Institute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari 70126 Italy
Machine Learning Group Université Libre de Bruxelles Brussels 1050 Belgium
SIB Swiss Institute of Bioinformatics Geneva 1206 Switzerland
Swiss Cancer Center Léman Lausanne 1015 Switzerland
Swiss Institute of Bioinformatics Lausanne 1015 Switzerland
ZB Med Information Centre for Life Sciences Cologne 50931 Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004182
- 003
- CZ-PrNML
- 005
- 20250206110001.0
- 007
- ta
- 008
- 250121e20240102xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gigascience/giae094 $2 doi
- 035 __
- $a (PubMed)39661723
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Attafi, Omar Abdelghani $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy $1 https://orcid.org/0009000223279430
- 245 10
- $a DOME Registry: implementing community-wide recommendations for reporting supervised machine learning in biology / $c OA. Attafi, D. Clementel, K. Kyritsis, E. Capriotti, G. Farrell, SC. Fragkouli, LJ. Castro, A. Hatos, T. Lenaerts, S. Mazurenko, S. Mozaffari, F. Pradelli, P. Ruch, C. Savojardo, P. Turina, F. Zambelli, D. Piovesan, AM. Monzon, F. Psomopoulos, SCE. Tosatto
- 520 9_
- $a Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evaluation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry (URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency and reproducibility of ML in the life sciences.
- 650 12
- $a řízené strojové učení $7 D000069553
- 650 12
- $a registrace $7 D012042
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a lidé $7 D006801
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Clementel, Damiano $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy $1 https://orcid.org/0000000273952921
- 700 1_
- $a Kyritsis, Konstantinos $u Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki 570 01, Greece $1 https://orcid.org/000000018035341X
- 700 1_
- $a Capriotti, Emidio $u Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy $1 https://orcid.org/0000000223230963
- 700 1_
- $a Farrell, Gavin $u ELIXIR Hub, Hinxton, Cambridge CB10 1SD, UK $1 https://orcid.org/0000000151668551
- 700 1_
- $a Fragkouli, Styliani-Christina $u Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki 570 01, Greece $u Department of Biology, National and Kapodistrian University of Athens, Athens 157 72, Greece $1 https://orcid.org/0000000340677123
- 700 1_
- $a Castro, Leyla Jael $u ZB Med Information Centre for Life Sciences, Cologne 50931, Germany $1 https://orcid.org/0000000339860510
- 700 1_
- $a Hatos, András $u Department of Oncology, Geneva University Hospitals, Geneva 1205, Switzerland $u Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland $u Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland $u Swiss Cancer Center Léman, Lausanne 1015, Switzerland $1 https://orcid.org/0000000192249820
- 700 1_
- $a Lenaerts, Tom $u Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussels, Brussels 1050, Belgium $u Machine Learning Group, Université Libre de Bruxelles, Brussels 1050, Belgium $u Artificial Intelligence Laboratory, Vrije Universiteit Brussels, Brussels 1050, Belgium $1 https://orcid.org/0000000336451455
- 700 1_
- $a Mazurenko, Stanislav $u Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Brno 62500, Czech Republic $u Masaryk University, Czech Republic International Clinical Research Centre, St. Anne's Hospital, Brno 65690, Czech Republic $1 https://orcid.org/0000000336594819
- 700 1_
- $a Mozaffari, Soroush $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
- 700 1_
- $a Pradelli, Franco $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy $1 https://orcid.org/0000000271525512
- 700 1_
- $a Ruch, Patrick $u HES-SO-HEG Geneva, Geneva 1227, Switzerland $u SIB Swiss Institute of Bioinformatics, Geneva 1206, Switzerland $1 https://orcid.org/0000000233742962
- 700 1_
- $a Savojardo, Castrense $u Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy $1 https://orcid.org/0000000273590633
- 700 1_
- $a Turina, Paola $u Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy $1 https://orcid.org/000000019174511X
- 700 1_
- $a Zambelli, Federico $u Department of Biosciences, University of Milan, Milan 20133, Italy $u Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari 70126, Italy $1 https://orcid.org/0000000334874331
- 700 1_
- $a Piovesan, Damiano $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy $1 https://orcid.org/0000000182102390
- 700 1_
- $a Monzon, Alexander Miguel $u Department of Information Engineering, University of Padova, Padova 35131, Italy $1 https://orcid.org/0000000303628218
- 700 1_
- $a Psomopoulos, Fotis $u Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki 570 01, Greece $1 https://orcid.org/0000000202224273
- 700 1_
- $a Tosatto, Silvio C E $u Department of Biomedical Sciences, University of Padova, Padova 35131, Italy $u Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari 70126, Italy $1 https://orcid.org/0000000345257793
- 773 0_
- $w MED00186214 $t GigaScience $x 2047-217X $g Roč. 13 (20240102)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39661723 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105956 $b ABA008
- 999 __
- $a ok $b bmc $g 2263736 $s 1240189
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 13 $c - $e 20240102 $i 2047-217X $m GigaScience $n Gigascience $x MED00186214
- GRA __
- $a CA21160 $p European Cooperation in Science and Technology
- LZP __
- $a Pubmed-20250121