Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P303/18/21942S
Czech Science Foundation
NU21-08-00286
Czech Health Research Council
PubMed
34071824
PubMed Central
PMC8229417
DOI
10.3390/diagnostics11060964
PII: diagnostics11060964
Knihovny.cz E-zdroje
- Klíčová slova
- diagnostics, miRNA, small RNA-seq,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol's performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.
Zobrazit více v PubMed
Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Vasudevan S., Tong Y., Steitz J.A. Switching from Repression to Activation: microRNAs Can Up-Regulate Translation. Science. 2007;318:1931–1934. doi: 10.1126/science.1149460. PubMed DOI
Vasudevan S. Posttranscriptional Upregulation by MicroRNAs. Wiley Interdiscip. Rev. RNA. 2012;3:311–330. doi: 10.1002/wrna.121. PubMed DOI
O’Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018;9:1–12. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC
Catalanotto C., Cogoni C., Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016;17:1721. doi: 10.3390/ijms17101712. PubMed DOI PMC
Kim V.N., Nam J.W. Genomics of microRNA. Trends Genet. 2006;22:165–173. doi: 10.1016/j.tig.2006.01.003. PubMed DOI
Gebert L.F., MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC
Neilsen C.T., Goodall G.J., Bracken C.P. IsomiRs—The overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28:544–549. doi: 10.1016/j.tig.2012.07.005. PubMed DOI
Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC
Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC
Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI
Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006;6:857–866. doi: 10.1038/nrc1997. PubMed DOI
Ruan K., Fang X., Ouyang G. MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Lett. 2009;285:116–126. doi: 10.1016/j.canlet.2009.04.031. PubMed DOI
Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs—An update. Nat. Rev. Clin. Oncol. 2018;15:541–563. doi: 10.1038/s41571-018-0035-x. PubMed DOI
Cortez M.A., Bueso-Ramos C., Ferdin J., Lopez-Berestein G., Sood A.K., Calin G.A. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011;8:467–477. doi: 10.1038/nrclinonc.2011.76. PubMed DOI PMC
Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012;13:358–369. doi: 10.1038/nrg3198. PubMed DOI PMC
Koppers-Lalic D., Hackenberg M., Menezes R.D. Non invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566. doi: 10.18632/oncotarget.8124. PubMed DOI PMC
Telonis A.G., Loher P., Jing Y., Londin E., Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: MicroRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015;43:9158–9175. doi: 10.1093/nar/gkv922. PubMed DOI PMC
Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017;45:2973–2985. doi: 10.1093/nar/gkx082. PubMed DOI PMC
Ono S., Lam S., Nagahara M., Hoon D. Circulating microRNA Biomarkers as Liquid Biopsy for Cancer Patients: Pros and Cons of Current Assays. J. Clin. Med. 2015;4:1890–1907. doi: 10.3390/jcm4101890. PubMed DOI PMC
Valihrach L., Androvic P., Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol. Asp. Med. 2020;72:1–19. doi: 10.1016/j.mam.2019.10.002. PubMed DOI
Shore S., Henderson J.M., Lebedev A., Salcedo M.P., Zon G., McCaffrey A.P., Paul N., Hogrefe R.I. Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS ONE. 2016;11:e0167009. doi: 10.1371/journal.pone.0167009. PubMed DOI PMC
Pease J. Small-RNA sequencing libraries with greatly reduced adaptor-dimer background. Nat. Methods. 2011;8:iii–iv. doi: 10.1038/nmeth.f.336. DOI
Baran-Gale J., Lisa Kurtz C., Erdos M.R., Sison C., Young A., Fannin E.E., Chines P.S., Sethupathy P. Addressing bias in small RNA library preparation for sequencing: A new protocol recovers microRNAs that evade capture by current methods. Front. Genet. 2015;6:1–9. doi: 10.3389/fgene.2015.00352. PubMed DOI PMC
Barberán-Soler S., Vo J.M., Hogans R.E., Dallas A., Johnston B.H., Kazakov S.A. Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol. 2018;19:105. doi: 10.1186/s13059-018-1488-z. PubMed DOI PMC
Dennis D., Rhodes M., Maclean K. Targeted miRNA Discovery and Validation—Using the nCounter® Platform. NanoString Technologies, Inc.; Seattle, WA, USA: 2015. pp. 1–8. NanoString Technologies—WHITE PAPER—nCounter PanCancer Immune Profiling Panel.
Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics in Western Equatoria State. Nat. Rev. Genet. 2009;10:57. doi: 10.1038/nrg2484. PubMed DOI PMC
Lu C., Tej S.S., Luo S., Haudenschild C.D., Meyers B.C., Green P.J. Genetics: Elucidation of the small RNA component of the transcriptome. Science. 2005;309:1567–1569. doi: 10.1126/science.1114112. PubMed DOI
Ruby J.G., Jan C., Player C., Axtell M.J., Lee W., Nusbaum C., Ge H., Bartel D.P. Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans. Cell. 2006;127:1193–1207. doi: 10.1016/j.cell.2006.10.040. PubMed DOI
Edgar R., Domrachev M., Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Chakraborty C., Bhattacharya M., Agoramoorthy G. Single-cell sequencing of miRNAs: A modified technology. Cell Biol. Int. 2020;44:1773–1780. doi: 10.1002/cbin.11376. PubMed DOI
Hafner M., Landgraf P., Ludwig J., Rice A., Ojo T., Lin C., Holoch D., Lim C., Tuschl T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44:3–12. doi: 10.1016/j.ymeth.2007.09.009. PubMed DOI PMC
Redshaw N., Wilkes T., Whale A., Cowen S., Huggett J., Foy C.A. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques. 2013;54:155–164. doi: 10.2144/000114002. PubMed DOI
Guo Y., Vickers K., Xiong Y., Zhao S., Sheng Q., Zhang P., Zhou W., Flynn C.R. Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genom. 2017;18:1–9. doi: 10.1186/s12864-016-3470-z. PubMed DOI PMC
Srinivasan S., Yeri A., Cheah P.S., Chung A., Dehoff P., Filant J., Laurent C.D., Laurent L.D., Magee R., Moeller C., et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell. 2019;177:446–462. doi: 10.1016/j.cell.2019.03.024. PubMed DOI PMC
Wong R.K., MacMahon M., Woodside J.V., Simpson D.A. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genom. 2019;20:1–12. doi: 10.1186/s12864-019-5826-7. PubMed DOI PMC
Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in small RNA deep sequencing data. Nucleic Acids Res. 2014;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC
Fuchs R.T., Sun Z., Zhuang F., Robb G.B. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS ONE. 2015;10:e0126049. doi: 10.1371/journal.pone.0126049. PubMed DOI PMC
Kalle E., Kubista M., Rensing C. Multi-template polymerase chain reaction. Biomol. Detect. Quantif. 2014;2:11–29. doi: 10.1016/j.bdq.2014.11.002. PubMed DOI PMC
Kivioja T., Vähärautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI
Fu Y., Wu P.H., Beane T., Zamore P.D., Weng Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genom. 2018;19:531. doi: 10.1186/s12864-018-4933-1. PubMed DOI PMC
Buschmann D., Haberberger A., Kirchner B., Spornraft M., Riedmaier I., Schelling G., Pfaffl M.W. Toward reliable biomarker signatures in the age of liquid biopsies—How to standardize the small RNA-Seq workflow. Nucleic Acids Res. 2016;44:5995–6018. doi: 10.1093/nar/gkw545. PubMed DOI PMC
Hafner M., Renwick N., Brown M., Mihailović A., Holoch D., Lin C., Pena J.T., Nusbaum J.D., Morozov P., Ludwig J., et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA. 2011;17:1697–1712. doi: 10.1261/rna.2799511. PubMed DOI PMC
Sorefan K., Pais H., Hall A.E., Kozomara A., Griffiths-Jones S., Moulton V., Dalmay T. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012;3:1–11. doi: 10.1186/1758-907X-3-4. PubMed DOI PMC
Zhuang F., Fuchs R.T., Robb G.B. Small RNA expression profiling by high-throughput sequencing: Implications of enzymatic manipulation. J. Nucleic Acids. 2012;2012:360358. doi: 10.1155/2012/360358. PubMed DOI PMC
Baroin-Tourancheau A., Jaszczyszyn Y., Benigni X., Amar L. Evaluating and Correcting Inherent Bias of microRNA Expression in Illumina Sequencing Analysis. Front. Mol. Biosci. 2019;6:17. doi: 10.3389/fmolb.2019.00017. PubMed DOI PMC
Xu P., Billmeier M., Mohorianu I., Green D., Fraser W.D., Dalmay T. An improved protocol for small RNA library construction using High Definition adapters. Methods Next Gener. Seq. 2015;2:1–10. doi: 10.1515/mngs-2015-0001. DOI
Pak J., Fire A. Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans. Science. 2007;315:241–244. doi: 10.1126/science.1132839. PubMed DOI
Kugelberg U., Nätt D., Skog S., Kutter C., Öst A. 5′XP sRNA-seq: Efficient identification of transcripts with and without 5′ phosphorylation reveals evolutionary conserved small RNA. RNA Biol. 2021:1–12. doi: 10.1080/15476286.2020.1861770. PubMed DOI PMC
Giraldez M.D., Spengler R.M., Etheridge A., Goicochea A.J., Tuck M., Choi S.W., Galas D.J., Tewari M. Phospho-RNA-seq: A modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019;38:1–14. doi: 10.15252/embj.2019101695. PubMed DOI PMC
Munafó D.B., Robb G.B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA. 2010;16:2537–2552. doi: 10.1261/rna.2242610. PubMed DOI PMC
Head S.R., Kiyomi Komori H., LaMere S.A., Whisenant T., Van Nieuwerburgh F., Salomon D.R., Ordoukhanian P. Library construction for next-generation sequencing: Overviews and challenges. BioTechniques. 2014;56:61–77. doi: 10.2144/000114133. PubMed DOI PMC
Vigneault F., Ter-Ovanesyan D., Alon S., Eminaga S., Christodoulou D.C., Seidman J.G., Eisenberg E., Church G.M. High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet. 2012;73:1–10. doi: 10.1002/0471142905.hg1112s73. PubMed DOI PMC
Kawano M., Kawazu C., Lizio M., Kawaji H., Carninci P., Suzuki H., Hayashizaki Y. Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. BioTechniques. 2010;49:751–754. doi: 10.2144/000113516. PubMed DOI
Hardigan A.A., Roberts B.S., Moore D.E., Ramaker R.C., Jones A.L., Myers R.M. CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries. Nucleic Acids Res. 2019;47:e84. doi: 10.1093/nar/gkz425. PubMed DOI PMC
Wickersheim M.L., Blumenstiel J.P. Terminator oligo blocking efficiently eliminates rRNA from Drosophila small RNA sequencing libraries. Biotechniques. 2013;55:269–272. doi: 10.2144/000114102. PubMed DOI PMC
Roberts B.S., Hardigan A.A., Kirby M.K., Fitz-Gerald M.B., Wilcox C.M., Kimberly R.P., Myers R.M. Blocking of targeted microRNAs from next-generation sequencing libraries. Nucleic Acids Res. 2015;43:1–8. doi: 10.1093/nar/gkv724. PubMed DOI PMC
Dard-Dascot C., Naquin D., D’Aubenton-Carafa Y., Alix K., Thermes C., van Dijk E. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genom. 2018;19:1–16. doi: 10.1186/s12864-018-4491-6. PubMed DOI PMC
Giraldez M.D., Spengler R.M., Etheridge A., Godoy P.M., Barczak A.J., Srinivasan S., De Hoff P.L., Tanriverdi K., Courtright A., Lu S., et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 2018;36:746–757. doi: 10.1038/nbt.4183. PubMed DOI PMC
Wright C., Rajpurohit A., Burke E.E., Williams C., Collado-Torres L., Kimos M., Brandon N.J., Cross A.J., Jaffe A.E., Weinberger D.R., et al. Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genom. 2019;20:513. doi: 10.1186/s12864-019-5870-3. PubMed DOI PMC
Androvic P., Benesova S., Rohlova E., Kubista M., Valihrach L. Small RNA-sequencing for Analysis of Circulating miRNAs: Benchmark Study. bioRxiv. 2021 doi: 10.1101/2021.03.27.437345. PubMed DOI
Zhuang F., Fuchs R.T., Sun Z., Zheng Y., Robb G.B. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res. 2012;40:e54. doi: 10.1093/nar/gkr1263. PubMed DOI PMC
Belair C.D., Hu T., Chu B., Freimer J.W., Cooperberg M.R., Blelloch R.H. High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing. Sci. Rep. 2019;9:5–12. doi: 10.1038/s41598-018-38458-7. PubMed DOI PMC
Saunders K., Bert A.G., Dredge B.K., Toubia J., Gregory P.A., Pillman K.A., Goodall G.J., Bracken C.P. Insufficiently complex unique-molecular identifiers (UMIs) distort small RNA sequencing. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-71323-0. PubMed DOI PMC
Herbert Z.T., Thimmapuram J., Xie S., Kershner J.P., Kolling F.W., Ringelberg C.S., Leclerc A., Alekseyev Y.O., Fan J., Podnar J.W., et al. Multisite evaluation of next-generation methods for small RNA quantification. J. Biomol. Tech. 2020;31:47–56. doi: 10.7171/jbt.20-3102-001. PubMed DOI PMC
Heinicke F., Zhong X., Zucknick M., Breidenbach J., Sundaram A.Y., Flåm S.T., Leithaug M., Dalland M., Farmer A., Henderson J.M., et al. Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol. 2020;17:75–86. doi: 10.1080/15476286.2019.1667741. PubMed DOI PMC
Jayaprakash A.D., Jabado O., Brown B.D., Sachidanandam R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 2011;39:1–12. doi: 10.1093/nar/gkr693. PubMed DOI PMC
Lipps C., Northe P., Figueiredo R., Rohde M., Brahmer A., Krämer-Albers E.M., Liebetrau C., Wiedenroth C.B., Mayer E., Kriechbaum S.D., et al. Non-invasive approach for evaluation of pulmonary hypertension using extracellular vesicle-associated small non-coding RNA. Biomolecules. 2019;9:666. doi: 10.3390/biom9110666. PubMed DOI PMC
Berezikov E., Van Tetering G., Verheul M., Van De Belt J., Van Laake L., Vos J., Verloop R., Van De Wetering M., Guryev V., Takada S., et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 2006;16:1289–1298. doi: 10.1101/gr.5159906. PubMed DOI PMC
Zhu Y.Y., Machleder E.M., Chenchik A., Li R., Siebert P.D. Reverse transcriptase template switching: A SMART™ approach for full-length cDNA library construction. BioTechniques. 2001;30:892–897. doi: 10.2144/01304pf02. PubMed DOI
Geiss G.K., Bumgarner R.E., Birditt B., Dahl T., Dowidar N., Dunaway D.L., Fell H.P., Ferree S., George R.D., Grogan T., et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26:317–325. doi: 10.1038/nbt1385. PubMed DOI
Chapin S.C., Appleyard D.C., Pregibon D.C., Doyle P.S. Rapid microRNA profiling on encoded gel microparticles. Angew. Chem. Int. Ed. 2011;50:2289–2293. doi: 10.1002/anie.201006523. PubMed DOI PMC
El-Khoury V., Pierson S., Kaoma T., Bernardin F., Berchem G. Assessing cellular and circulating miRNA recovery: The impact of the RNA isolation method and the quantity of input material. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep19529. PubMed DOI PMC
Girard L., Rodriguez-Canales J., Behrens C., Thompson D.M., Botros I.W., Tang H., Xie Y., Rekhtman N., Travis W.D., Wistuba I.I., et al. An Expression Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer. Clin. Cancer Res. 2016;22:4880–4889. doi: 10.1158/1078-0432.CCR-15-2900. PubMed DOI PMC
Godoy P.M., Barczak A.J., DeHoff P., Srinivasan S., Etheridge A., Galas D., Das S., Erle D.J., Laurent L.C. Comparison of Reproducibility, Accuracy, Sensitivity, and Specificity of miRNA Quantification Platforms. Cell Rep. 2019;29:4212–4222.e5. doi: 10.1016/j.celrep.2019.11.078. PubMed DOI PMC
Yeri A., Courtright A., Danielson K., Hutchins E., Alsop E., Carlson E., Hsieh M., Ziegler O., Das A., Shah R.V., et al. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genom. 2018;19:1–15. doi: 10.1186/s12864-018-4726-6. PubMed DOI PMC
Das S., Abdel-Mageed A.B., Adamidi C., Adelson P.D., Akat K.M., Alsop E., Ansel K.M., Arango J., Aronin N., Avsaroglu S.K., et al. The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell. 2019;177:231–242. doi: 10.1016/j.cell.2019.03.023. PubMed DOI PMC
Coenen-Stass A.M.L., Magen I., Brooks T., Ben-Dov I.Z., Greensmith L., Hornstein E., Fratta P. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018;15:1133–1145. doi: 10.1080/15476286.2018.1514236. PubMed DOI PMC
Baldrich P., Tamim S., Mathioni S., Meyers B. Ligation bias is a major contributor to nonstoichiometric abundances of secondary siRNAs and impacts analyses of microRNAs. bioRxiv. 2020 doi: 10.1101/2020.09.14.296616. DOI
Maguire S., Lohman G.J., Guan S. A low-bias and sensitive small RNA library preparation method using randomized splint ligation. Nucleic Acids Res. 2020;48:1–14. doi: 10.1093/nar/gkaa480. PubMed DOI PMC
Kim H., Kim J., Kim K., Chang H., You K.V., Kim N. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3 end modification. Nucleic Acids Res. 2019;47:2630–2640. doi: 10.1093/nar/gky1293. PubMed DOI PMC
Raine A., Manlig E., Wahlberg P., Syvänen A.C., Nordlund J. SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing. Nucleic Acids Res. 2017;45 doi: 10.1093/nar/gkw1110. PubMed DOI PMC
Wu J., Dai W., Wu L., Wang J. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states. BMC Genom. 2018;19:1–12. doi: 10.1186/s12864-018-4530-3. PubMed DOI PMC
Persson H., Søkilde R., Pirona A.C., Rovira C. Preparation of highly multiplexed small RNA sequencing libraries. BioTechniques. 2017;63:57–64. doi: 10.2144/000114574. PubMed DOI
Chen L., Heikkinen L., Wang C.L., Yang Y., Knott K.E., Wong G. MiRToolsGallery: A tag-based and rankable microRNA bioinformatics resources database portal. Database. 2018;2018:1–10. doi: 10.1093/database/bay004. PubMed DOI PMC
Chen L., Heikkinen L., Wang C., Yang Y., Sun H., Wong G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform. 2019;20:1836–1852. doi: 10.1093/bib/bby054. PubMed DOI PMC