Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis

. 2021 May 27 ; 11 (6) : . [epub] 20210527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34071824

Grantová podpora
P303/18/21942S Czech Science Foundation
NU21-08-00286 Czech Health Research Council

Odkazy

PubMed 34071824
PubMed Central PMC8229417
DOI 10.3390/diagnostics11060964
PII: diagnostics11060964
Knihovny.cz E-zdroje

MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol's performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.

Zobrazit více v PubMed

Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Vasudevan S., Tong Y., Steitz J.A. Switching from Repression to Activation: microRNAs Can Up-Regulate Translation. Science. 2007;318:1931–1934. doi: 10.1126/science.1149460. PubMed DOI

Vasudevan S. Posttranscriptional Upregulation by MicroRNAs. Wiley Interdiscip. Rev. RNA. 2012;3:311–330. doi: 10.1002/wrna.121. PubMed DOI

O’Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018;9:1–12. doi: 10.3389/fendo.2018.00402. PubMed DOI PMC

Catalanotto C., Cogoni C., Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016;17:1721. doi: 10.3390/ijms17101712. PubMed DOI PMC

Kim V.N., Nam J.W. Genomics of microRNA. Trends Genet. 2006;22:165–173. doi: 10.1016/j.tig.2006.01.003. PubMed DOI

Gebert L.F., MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC

Neilsen C.T., Goodall G.J., Bracken C.P. IsomiRs—The overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28:544–549. doi: 10.1016/j.tig.2012.07.005. PubMed DOI

Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC

Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi: 10.1101/gr.082701.108. PubMed DOI PMC

Lu J., Getz G., Miska E.A., Alvarez-Saavedra E., Lamb J., Peck D., Sweet-Cordero A., Ebert B.L., Mak R.H., Ferrando A.A., et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838. doi: 10.1038/nature03702. PubMed DOI

Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006;6:857–866. doi: 10.1038/nrc1997. PubMed DOI

Ruan K., Fang X., Ouyang G. MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Lett. 2009;285:116–126. doi: 10.1016/j.canlet.2009.04.031. PubMed DOI

Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs—An update. Nat. Rev. Clin. Oncol. 2018;15:541–563. doi: 10.1038/s41571-018-0035-x. PubMed DOI

Cortez M.A., Bueso-Ramos C., Ferdin J., Lopez-Berestein G., Sood A.K., Calin G.A. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011;8:467–477. doi: 10.1038/nrclinonc.2011.76. PubMed DOI PMC

Pritchard C.C., Cheng H.H., Tewari M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012;13:358–369. doi: 10.1038/nrg3198. PubMed DOI PMC

Koppers-Lalic D., Hackenberg M., Menezes R.D. Non invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles. Oncotarget. 2016;7:22566. doi: 10.18632/oncotarget.8124. PubMed DOI PMC

Telonis A.G., Loher P., Jing Y., Londin E., Rigoutsos I. Beyond the one-locus-one-miRNA paradigm: MicroRNA isoforms enable deeper insights into breast cancer heterogeneity. Nucleic Acids Res. 2015;43:9158–9175. doi: 10.1093/nar/gkv922. PubMed DOI PMC

Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017;45:2973–2985. doi: 10.1093/nar/gkx082. PubMed DOI PMC

Ono S., Lam S., Nagahara M., Hoon D. Circulating microRNA Biomarkers as Liquid Biopsy for Cancer Patients: Pros and Cons of Current Assays. J. Clin. Med. 2015;4:1890–1907. doi: 10.3390/jcm4101890. PubMed DOI PMC

Valihrach L., Androvic P., Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol. Asp. Med. 2020;72:1–19. doi: 10.1016/j.mam.2019.10.002. PubMed DOI

Shore S., Henderson J.M., Lebedev A., Salcedo M.P., Zon G., McCaffrey A.P., Paul N., Hogrefe R.I. Small RNA library preparation method for next-generation sequencing using chemical modifications to prevent adapter dimer formation. PLoS ONE. 2016;11:e0167009. doi: 10.1371/journal.pone.0167009. PubMed DOI PMC

Pease J. Small-RNA sequencing libraries with greatly reduced adaptor-dimer background. Nat. Methods. 2011;8:iii–iv. doi: 10.1038/nmeth.f.336. DOI

Baran-Gale J., Lisa Kurtz C., Erdos M.R., Sison C., Young A., Fannin E.E., Chines P.S., Sethupathy P. Addressing bias in small RNA library preparation for sequencing: A new protocol recovers microRNAs that evade capture by current methods. Front. Genet. 2015;6:1–9. doi: 10.3389/fgene.2015.00352. PubMed DOI PMC

Barberán-Soler S., Vo J.M., Hogans R.E., Dallas A., Johnston B.H., Kazakov S.A. Decreasing miRNA sequencing bias using a single adapter and circularization approach. Genome Biol. 2018;19:105. doi: 10.1186/s13059-018-1488-z. PubMed DOI PMC

Dennis D., Rhodes M., Maclean K. Targeted miRNA Discovery and Validation—Using the nCounter® Platform. NanoString Technologies, Inc.; Seattle, WA, USA: 2015. pp. 1–8. NanoString Technologies—WHITE PAPER—nCounter PanCancer Immune Profiling Panel.

Wang Z., Gerstein M., Snyder M. RNA-Seq: A revolutionary tool for transcriptomics in Western Equatoria State. Nat. Rev. Genet. 2009;10:57. doi: 10.1038/nrg2484. PubMed DOI PMC

Lu C., Tej S.S., Luo S., Haudenschild C.D., Meyers B.C., Green P.J. Genetics: Elucidation of the small RNA component of the transcriptome. Science. 2005;309:1567–1569. doi: 10.1126/science.1114112. PubMed DOI

Ruby J.G., Jan C., Player C., Axtell M.J., Lee W., Nusbaum C., Ge H., Bartel D.P. Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans. Cell. 2006;127:1193–1207. doi: 10.1016/j.cell.2006.10.040. PubMed DOI

Edgar R., Domrachev M., Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Chakraborty C., Bhattacharya M., Agoramoorthy G. Single-cell sequencing of miRNAs: A modified technology. Cell Biol. Int. 2020;44:1773–1780. doi: 10.1002/cbin.11376. PubMed DOI

Hafner M., Landgraf P., Ludwig J., Rice A., Ojo T., Lin C., Holoch D., Lim C., Tuschl T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44:3–12. doi: 10.1016/j.ymeth.2007.09.009. PubMed DOI PMC

Redshaw N., Wilkes T., Whale A., Cowen S., Huggett J., Foy C.A. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. BioTechniques. 2013;54:155–164. doi: 10.2144/000114002. PubMed DOI

Guo Y., Vickers K., Xiong Y., Zhao S., Sheng Q., Zhang P., Zhou W., Flynn C.R. Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genom. 2017;18:1–9. doi: 10.1186/s12864-016-3470-z. PubMed DOI PMC

Srinivasan S., Yeri A., Cheah P.S., Chung A., Dehoff P., Filant J., Laurent C.D., Laurent L.D., Magee R., Moeller C., et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell. 2019;177:446–462. doi: 10.1016/j.cell.2019.03.024. PubMed DOI PMC

Wong R.K., MacMahon M., Woodside J.V., Simpson D.A. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genom. 2019;20:1–12. doi: 10.1186/s12864-019-5826-7. PubMed DOI PMC

Raabe C.A., Tang T.H., Brosius J., Rozhdestvensky T.S. Biases in small RNA deep sequencing data. Nucleic Acids Res. 2014;42:1414–1426. doi: 10.1093/nar/gkt1021. PubMed DOI PMC

Fuchs R.T., Sun Z., Zhuang F., Robb G.B. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS ONE. 2015;10:e0126049. doi: 10.1371/journal.pone.0126049. PubMed DOI PMC

Kalle E., Kubista M., Rensing C. Multi-template polymerase chain reaction. Biomol. Detect. Quantif. 2014;2:11–29. doi: 10.1016/j.bdq.2014.11.002. PubMed DOI PMC

Kivioja T., Vähärautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72–74. doi: 10.1038/nmeth.1778. PubMed DOI

Fu Y., Wu P.H., Beane T., Zamore P.D., Weng Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genom. 2018;19:531. doi: 10.1186/s12864-018-4933-1. PubMed DOI PMC

Buschmann D., Haberberger A., Kirchner B., Spornraft M., Riedmaier I., Schelling G., Pfaffl M.W. Toward reliable biomarker signatures in the age of liquid biopsies—How to standardize the small RNA-Seq workflow. Nucleic Acids Res. 2016;44:5995–6018. doi: 10.1093/nar/gkw545. PubMed DOI PMC

Hafner M., Renwick N., Brown M., Mihailović A., Holoch D., Lin C., Pena J.T., Nusbaum J.D., Morozov P., Ludwig J., et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA. 2011;17:1697–1712. doi: 10.1261/rna.2799511. PubMed DOI PMC

Sorefan K., Pais H., Hall A.E., Kozomara A., Griffiths-Jones S., Moulton V., Dalmay T. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012;3:1–11. doi: 10.1186/1758-907X-3-4. PubMed DOI PMC

Zhuang F., Fuchs R.T., Robb G.B. Small RNA expression profiling by high-throughput sequencing: Implications of enzymatic manipulation. J. Nucleic Acids. 2012;2012:360358. doi: 10.1155/2012/360358. PubMed DOI PMC

Baroin-Tourancheau A., Jaszczyszyn Y., Benigni X., Amar L. Evaluating and Correcting Inherent Bias of microRNA Expression in Illumina Sequencing Analysis. Front. Mol. Biosci. 2019;6:17. doi: 10.3389/fmolb.2019.00017. PubMed DOI PMC

Xu P., Billmeier M., Mohorianu I., Green D., Fraser W.D., Dalmay T. An improved protocol for small RNA library construction using High Definition adapters. Methods Next Gener. Seq. 2015;2:1–10. doi: 10.1515/mngs-2015-0001. DOI

Pak J., Fire A. Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans. Science. 2007;315:241–244. doi: 10.1126/science.1132839. PubMed DOI

Kugelberg U., Nätt D., Skog S., Kutter C., Öst A. 5′XP sRNA-seq: Efficient identification of transcripts with and without 5′ phosphorylation reveals evolutionary conserved small RNA. RNA Biol. 2021:1–12. doi: 10.1080/15476286.2020.1861770. PubMed DOI PMC

Giraldez M.D., Spengler R.M., Etheridge A., Goicochea A.J., Tuck M., Choi S.W., Galas D.J., Tewari M. Phospho-RNA-seq: A modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019;38:1–14. doi: 10.15252/embj.2019101695. PubMed DOI PMC

Munafó D.B., Robb G.B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA. 2010;16:2537–2552. doi: 10.1261/rna.2242610. PubMed DOI PMC

Head S.R., Kiyomi Komori H., LaMere S.A., Whisenant T., Van Nieuwerburgh F., Salomon D.R., Ordoukhanian P. Library construction for next-generation sequencing: Overviews and challenges. BioTechniques. 2014;56:61–77. doi: 10.2144/000114133. PubMed DOI PMC

Vigneault F., Ter-Ovanesyan D., Alon S., Eminaga S., Christodoulou D.C., Seidman J.G., Eisenberg E., Church G.M. High-throughput multiplex sequencing of miRNA. Curr. Protoc. Hum. Genet. 2012;73:1–10. doi: 10.1002/0471142905.hg1112s73. PubMed DOI PMC

Kawano M., Kawazu C., Lizio M., Kawaji H., Carninci P., Suzuki H., Hayashizaki Y. Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. BioTechniques. 2010;49:751–754. doi: 10.2144/000113516. PubMed DOI

Hardigan A.A., Roberts B.S., Moore D.E., Ramaker R.C., Jones A.L., Myers R.M. CRISPR/Cas9-targeted removal of unwanted sequences from small-RNA sequencing libraries. Nucleic Acids Res. 2019;47:e84. doi: 10.1093/nar/gkz425. PubMed DOI PMC

Wickersheim M.L., Blumenstiel J.P. Terminator oligo blocking efficiently eliminates rRNA from Drosophila small RNA sequencing libraries. Biotechniques. 2013;55:269–272. doi: 10.2144/000114102. PubMed DOI PMC

Roberts B.S., Hardigan A.A., Kirby M.K., Fitz-Gerald M.B., Wilcox C.M., Kimberly R.P., Myers R.M. Blocking of targeted microRNAs from next-generation sequencing libraries. Nucleic Acids Res. 2015;43:1–8. doi: 10.1093/nar/gkv724. PubMed DOI PMC

Dard-Dascot C., Naquin D., D’Aubenton-Carafa Y., Alix K., Thermes C., van Dijk E. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genom. 2018;19:1–16. doi: 10.1186/s12864-018-4491-6. PubMed DOI PMC

Giraldez M.D., Spengler R.M., Etheridge A., Godoy P.M., Barczak A.J., Srinivasan S., De Hoff P.L., Tanriverdi K., Courtright A., Lu S., et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 2018;36:746–757. doi: 10.1038/nbt.4183. PubMed DOI PMC

Wright C., Rajpurohit A., Burke E.E., Williams C., Collado-Torres L., Kimos M., Brandon N.J., Cross A.J., Jaffe A.E., Weinberger D.R., et al. Comprehensive assessment of multiple biases in small RNA sequencing reveals significant differences in the performance of widely used methods. BMC Genom. 2019;20:513. doi: 10.1186/s12864-019-5870-3. PubMed DOI PMC

Androvic P., Benesova S., Rohlova E., Kubista M., Valihrach L. Small RNA-sequencing for Analysis of Circulating miRNAs: Benchmark Study. bioRxiv. 2021 doi: 10.1101/2021.03.27.437345. PubMed DOI

Zhuang F., Fuchs R.T., Sun Z., Zheng Y., Robb G.B. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res. 2012;40:e54. doi: 10.1093/nar/gkr1263. PubMed DOI PMC

Belair C.D., Hu T., Chu B., Freimer J.W., Cooperberg M.R., Blelloch R.H. High-throughput, Efficient, and Unbiased Capture of Small RNAs from Low-input Samples for Sequencing. Sci. Rep. 2019;9:5–12. doi: 10.1038/s41598-018-38458-7. PubMed DOI PMC

Saunders K., Bert A.G., Dredge B.K., Toubia J., Gregory P.A., Pillman K.A., Goodall G.J., Bracken C.P. Insufficiently complex unique-molecular identifiers (UMIs) distort small RNA sequencing. Sci. Rep. 2020;10:1–9. doi: 10.1038/s41598-020-71323-0. PubMed DOI PMC

Herbert Z.T., Thimmapuram J., Xie S., Kershner J.P., Kolling F.W., Ringelberg C.S., Leclerc A., Alekseyev Y.O., Fan J., Podnar J.W., et al. Multisite evaluation of next-generation methods for small RNA quantification. J. Biomol. Tech. 2020;31:47–56. doi: 10.7171/jbt.20-3102-001. PubMed DOI PMC

Heinicke F., Zhong X., Zucknick M., Breidenbach J., Sundaram A.Y., Flåm S.T., Leithaug M., Dalland M., Farmer A., Henderson J.M., et al. Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol. 2020;17:75–86. doi: 10.1080/15476286.2019.1667741. PubMed DOI PMC

Jayaprakash A.D., Jabado O., Brown B.D., Sachidanandam R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 2011;39:1–12. doi: 10.1093/nar/gkr693. PubMed DOI PMC

Lipps C., Northe P., Figueiredo R., Rohde M., Brahmer A., Krämer-Albers E.M., Liebetrau C., Wiedenroth C.B., Mayer E., Kriechbaum S.D., et al. Non-invasive approach for evaluation of pulmonary hypertension using extracellular vesicle-associated small non-coding RNA. Biomolecules. 2019;9:666. doi: 10.3390/biom9110666. PubMed DOI PMC

Berezikov E., Van Tetering G., Verheul M., Van De Belt J., Van Laake L., Vos J., Verloop R., Van De Wetering M., Guryev V., Takada S., et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 2006;16:1289–1298. doi: 10.1101/gr.5159906. PubMed DOI PMC

Zhu Y.Y., Machleder E.M., Chenchik A., Li R., Siebert P.D. Reverse transcriptase template switching: A SMART™ approach for full-length cDNA library construction. BioTechniques. 2001;30:892–897. doi: 10.2144/01304pf02. PubMed DOI

Geiss G.K., Bumgarner R.E., Birditt B., Dahl T., Dowidar N., Dunaway D.L., Fell H.P., Ferree S., George R.D., Grogan T., et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26:317–325. doi: 10.1038/nbt1385. PubMed DOI

Chapin S.C., Appleyard D.C., Pregibon D.C., Doyle P.S. Rapid microRNA profiling on encoded gel microparticles. Angew. Chem. Int. Ed. 2011;50:2289–2293. doi: 10.1002/anie.201006523. PubMed DOI PMC

El-Khoury V., Pierson S., Kaoma T., Bernardin F., Berchem G. Assessing cellular and circulating miRNA recovery: The impact of the RNA isolation method and the quantity of input material. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep19529. PubMed DOI PMC

Girard L., Rodriguez-Canales J., Behrens C., Thompson D.M., Botros I.W., Tang H., Xie Y., Rekhtman N., Travis W.D., Wistuba I.I., et al. An Expression Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer. Clin. Cancer Res. 2016;22:4880–4889. doi: 10.1158/1078-0432.CCR-15-2900. PubMed DOI PMC

Godoy P.M., Barczak A.J., DeHoff P., Srinivasan S., Etheridge A., Galas D., Das S., Erle D.J., Laurent L.C. Comparison of Reproducibility, Accuracy, Sensitivity, and Specificity of miRNA Quantification Platforms. Cell Rep. 2019;29:4212–4222.e5. doi: 10.1016/j.celrep.2019.11.078. PubMed DOI PMC

Yeri A., Courtright A., Danielson K., Hutchins E., Alsop E., Carlson E., Hsieh M., Ziegler O., Das A., Shah R.V., et al. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genom. 2018;19:1–15. doi: 10.1186/s12864-018-4726-6. PubMed DOI PMC

Das S., Abdel-Mageed A.B., Adamidi C., Adelson P.D., Akat K.M., Alsop E., Ansel K.M., Arango J., Aronin N., Avsaroglu S.K., et al. The Extracellular RNA Communication Consortium: Establishing Foundational Knowledge and Technologies for Extracellular RNA Research. Cell. 2019;177:231–242. doi: 10.1016/j.cell.2019.03.023. PubMed DOI PMC

Coenen-Stass A.M.L., Magen I., Brooks T., Ben-Dov I.Z., Greensmith L., Hornstein E., Fratta P. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018;15:1133–1145. doi: 10.1080/15476286.2018.1514236. PubMed DOI PMC

Baldrich P., Tamim S., Mathioni S., Meyers B. Ligation bias is a major contributor to nonstoichiometric abundances of secondary siRNAs and impacts analyses of microRNAs. bioRxiv. 2020 doi: 10.1101/2020.09.14.296616. DOI

Maguire S., Lohman G.J., Guan S. A low-bias and sensitive small RNA library preparation method using randomized splint ligation. Nucleic Acids Res. 2020;48:1–14. doi: 10.1093/nar/gkaa480. PubMed DOI PMC

Kim H., Kim J., Kim K., Chang H., You K.V., Kim N. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3 end modification. Nucleic Acids Res. 2019;47:2630–2640. doi: 10.1093/nar/gky1293. PubMed DOI PMC

Raine A., Manlig E., Wahlberg P., Syvänen A.C., Nordlund J. SPlinted Ligation Adapter Tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing. Nucleic Acids Res. 2017;45 doi: 10.1093/nar/gkw1110. PubMed DOI PMC

Wu J., Dai W., Wu L., Wang J. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states. BMC Genom. 2018;19:1–12. doi: 10.1186/s12864-018-4530-3. PubMed DOI PMC

Persson H., Søkilde R., Pirona A.C., Rovira C. Preparation of highly multiplexed small RNA sequencing libraries. BioTechniques. 2017;63:57–64. doi: 10.2144/000114574. PubMed DOI

Chen L., Heikkinen L., Wang C.L., Yang Y., Knott K.E., Wong G. MiRToolsGallery: A tag-based and rankable microRNA bioinformatics resources database portal. Database. 2018;2018:1–10. doi: 10.1093/database/bay004. PubMed DOI PMC

Chen L., Heikkinen L., Wang C., Yang Y., Sun H., Wong G. Trends in the development of miRNA bioinformatics tools. Brief. Bioinform. 2019;20:1836–1852. doi: 10.1093/bib/bby054. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...