Multi-template polymerase chain reaction

. 2014 Dec ; 2 () : 11-29. [epub] 20141204

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27896140
Odkazy

PubMed 27896140
PubMed Central PMC5121205
DOI 10.1016/j.bdq.2014.11.002
PII: S2214-7535(14)00010-2
Knihovny.cz E-zdroje

PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.

Zobrazit více v PubMed

Chandler D. Redefining relativity: quantitative PCR at a low template concentrations for industrial and environmental microbiology. J Ind Microbiol Biotechnol. 1998;21:128–140.

Ludwig W. Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol. 2007;120:225–236. PubMed

Wagner A., Blackstone N., Cartwright P., Dick M., Misof B., Snow P. Survey of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol. 1994;43:250–261.

Nikolaev S., Berney J., Fahrni I., Boliver S., Poler S., Mylnikov A. The twilight of Heliozoa and rise of Rhizaria, a new supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A. 2004;101:8066–8071. PubMed PMC

Lenz T., Becker S. Simple approach to reduce PCR artifact formation leads to reliable genotyping of MHC and other highly polymorphic loci – implications for evolutionary analysis. Gene. 2008;427:117–123. PubMed

Yoon H., Grant J., Tekle Y., Wu M., Chaon B., Cole J. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol. 2008;8:14. PubMed PMC

Jobling M., Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet. 2004;5:739–751. PubMed

Brooks-Wilson A., Goodfellow P., Povey S., Nevanlinna H., de Jong P., Goodfellow P. Rapid cloning and characterization of new chromosome 10 DNA markers by ALU element-mediated PCR. Genomics. 1990;7:614–620. PubMed

VanDevanter D., Warrener P., Bennet L., Schultz E., Coulter S., Garber R. Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol. 1996;34:1666–1671. PubMed PMC

Pompanon F., Bonin A., Bellemain E., Taberlet P. Genotyping errors: causes, consequences and solutions. Nat Genet. 2005;6:847–859. PubMed

Pace N. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–740. PubMed

Dawson S., Pace N. Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A. 2002;99:8324–8329. PubMed PMC

Doherty M., Costas B., McManus G., Katz L. Culture-independent assessment of planktonic ciliate diversity in costal northwest Atlantic waters. Aquat Microb Ecol. 2007;48:141–154.

Keohavong P., Thilly W. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989;86:9253–9257. PubMed PMC

Nagamine C., Chan K., Lau Y. A PCR artifact: generation of heteroduplexes. Am J Hum Genet. 1989;45:337–339. PubMed PMC

Jensen M., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. Genome Res. 1993;3:186–194. PubMed

Ruano G., Kidd K. Modeling of heteroduplex formation during PCR from mixtures of DNA templates. PCR Methods Appl. 1992;2:112–116. PubMed

Ogino S., Wilson R. Quantification of PCR bias caused by a single nucleotide polymorphism in SMN gene dosage analysis. J Mol Diagn. 2002;4:185–190. PubMed PMC

Kanagawa T. Bias and artefacts in multitemplate polymerase chain reactions (PCR) J Biosci Bioeng. 2003;96:317–323. PubMed

Acinas S., Sarma-Rupavtarm R., Klepac-Ceraj V., Polz M. PCR-induced sequence artefacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol. 2005;71:8966–8969. PubMed PMC

Michu E., Mrackova M., Vyskot B., Zluvova J. Reduction of heteroduplex formation in PCR amplification. Biol Plant. 2010;54:173–176.

Egert M., Friedrich M. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl Environ Microbiol. 2003;69:2555–2562. PubMed PMC

Uejima H., Lee M., Gui H., Fienberg A. Hot-stop PCR: a simple and general assay for linear quantification of allele ratios. Nat Genet. 2000;25:375–376. PubMed

Shuldiner A., Nirula A., Roth J. Hybrid DNA artefacts from PCR of closely related target sequences. Nucleic Acids Res. 1989;17:4409. PubMed PMC

Meyerhans A., Vartanian J.-P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990;17:1687–1691. PubMed PMC

Pääbo S., Irwin D., Wilson A. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem. 1990;265:4718–4721. PubMed

Odelberg S.J., Weiss R.B., Hata A., White R. Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res. 1995;11:2049–2057. PubMed PMC

Zylstra P., Rothenfluh H., Weiller G., Blanden R., Steele E. PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol Cell Biol. 1998;76:395–405. PubMed

Klug J., Wolf M., Beato M. Creating chimeric molecules by PCR directed homologous DNA recombination. Nucleic Acids Res. 1991;19:2793. PubMed PMC

Lahr D., Katz L. Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. Biotechniques. 2009;47:857–866. PubMed

Gorzer I., Guelly C., Trajanoski S., Puchhammer-Stockl E. The impact of PCR-generated recombination on diversity estimation of mixed viral populations by deep sequencing. J Virol Methods. 2010;169:248–252. PubMed

Fonseca V., Nichols B., Lallias D., Quince C., Carvalho G., Power D. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analysis. Nucleic Acids Res. 2012;40:e66. PubMed PMC

Hudenholtz P., Huber T. Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol. 2003;53:289–293. PubMed

Ashelford K., Chuzhanova N., Fry J., Jones A., Weightman A. At least 1 in 20 16S rRNA sequence records currently held in Public Repositories is estimated to contain substantial anomalies. Appl Environ Microbiol. 2005;71:7724–7736. PubMed PMC

Ashelford K., Chuzhanova N., Fry J., Jones A., Weightman A. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol. 2006;72:5734–5741. PubMed PMC

Ziegler A., Ehlers A., Forbes S., Trowsdale J., Volz A., Younger R. Polymorphism in olfactory receptor genes: a cautionary note. Hum Immunol. 2000;61:1281–1284. PubMed

Kennedy L., Ryvar R., Gaskell R., Addie D., Willoughby K., Carter S. Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics. 2002;54:348–352. PubMed

Bar T., Kubista M., Tichopad A. Validation of kinetics similarity in qPCR. Nucleic Acid Res. 2012;40:1395–1406. PubMed PMC

Gonzalez J., Portillo M., Belda-ferre P., Mira A. Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS ONE. 2012;7:e29973. PubMed PMC

Reysenbach A.-L., Giver L., Wickham G., Pace N. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol. 1992;58:3417–3418. PubMed PMC

Raeymaekers L. A commentary on the practical applications of quantitative PCR. Genome Res. 1995;5:91–94. PubMed

Suzuki M., Giovannoni S. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996;62:625–630. PubMed PMC

Polz M., Cavanaugh C. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol. 1998;64:3724–3730. PubMed PMC

Hong S.-H., Bunge J., Leslin C., Jeon S., Epstain S. ISME J. 2009;3:1365–1373. PubMed

Weissensteiner T., Lanchbury J. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques. 1996;21:1102–1108. PubMed

Booth C., Pienaar E., Termaat J., Whitney S., Louw T., Viljoen H. Efficiency of the polymerase chain reaction. Chem Eng Sci. 2010;65:4996–5006. PubMed PMC

Egert M., Friedrich M. Post-amplification Klenow fragment treatment alleviates PCR bias caused by partially single-stranded amplicons. J Microbiol Methods. 2005;61:69–75. PubMed

Shannon B., Cohen R., Garrett K. Influence of 16S rDNA primer sequence mismatches on the spectrum of bacterial genera detected in prostate tissue by universal eubacterial PCR. Prostate. 2008;68:1487–1491. PubMed

Neilson J., Jordan F., Maier R. Analysis of artefacts suggests DGGE should not be used for quantitative diversity analysis. J Microbiol Methods. 2013;92:256–263. PubMed PMC

Kwok S., Kellogg D., McKinney N., Spasic D., Goda L., Levenson C. Effect of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990;18:999–1005. PubMed PMC

Echols H., Goodman M. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. PubMed

Kunkel T., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. PubMed

Johnson S., Beese L. Structures of mismatch replication errors observed in a DNA polymerase. Cell. 2004;116:803–816. PubMed

Morales S., Holben W. Empirical testing of 16S rRNA gene PCR primer pair reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl Environ Microbiol. 2009;75:2677–2683. PubMed PMC

Ashrafi E., Paul N. Improved PCR specificity with hot start PCR primers. Biotechniques. 2009;47:789–790. PubMed

Henegariu O., Heerema N., Dlouhy S., Vance G., Vogt P. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23:504–511. PubMed

Eckert K., Kunkel T. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1991;1:17–24. PubMed

Ling L., Keohavong P., Dias C., Thilly W. Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases. Genome Res. 1991;1:63–69. PubMed

Cline J., Braman J., Hogrefe H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24:3546–3551. PubMed PMC

Flaman M., Frebourg T., Moreau V., Charbonnier F., Martin C., Ishioka C. A rapid PCR fidelity assay. Nucleic Acids Res. 1994;22:3259–3260. PubMed PMC

Arezi B., Xing W., Sorge J., Hogrefe H. Amplification efficiency of thermostable DNA polymerases. Anal Biochem. 2003;321:226–235. PubMed

Dunning A., Talmud P., Humphries S. Errors in the polymerase chain reaction. Nucleic Acids Res. 1988;16:10393. PubMed PMC

Cha R., Thilly W. Specificity, efficiency, and fidelity of PCR. Genome Res. 1993;3:S18–S29. PubMed

Wintzingerode F., Göbel U., Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997;21:213–229. PubMed

Bloch W. A biochemical perspective of the polymerase chain reaction. Biochemistry. 1991;30:2735–2747. PubMed

Loewen P., Switala J. Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus. Gene. 1995;164:59–63. PubMed

Qiu X., Wu L., Huang H., McDonel P., Palumbo A., Tiedje J. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol. 2001;67:880–887. PubMed PMC

Pavlov A., Pavlova N., Kozyavkin S., Slesarev A. Recent developments in the optimization of the thermostable DNA polymerases for efficient applications. Trends Biotechnol. 2004;22:253–260. PubMed

Dawson K., Thorpe R., Malhotra A. Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS ONE. 2010;5:e15204. PubMed PMC

Clayton R., Sutton G., Hinkle P., Bult C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequence may not adequately represent prokaryotic taxa. Int J Syst Bacteriol. 1995;45:595–599. PubMed

Myers T., Gelfand D. Reverse transcription and DNA amplification by Thermus thermophilus DNA polymerase. Biochemistry. 1991;30:7661–7666. PubMed

Auer T., Sninsky J., Gelfand D., Myers T. Selective amplification of RNA utilizing the nucleotide analog dITP and Thermus thermophilus DNA polymerase. Nucleic Acids Res. 1996;24:5021–5025. PubMed PMC

Grabko V., Chistyakova L., Lyapustin V., Korobko V., Miroshnikov A. Reverse transcription, amplification and sequencing of poliovirus RNA by Taq DNA polymerase. FEBS Lett. 1996;387:189–192. PubMed

Lyamichev V., Brow M., Dahlberg J. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993;260:778–783. PubMed

Tombline G., Bellizzi D., Sgaramella V. Heterogeneity of primer extension products in asymmetric PCR is due to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Proc Natl Acad Sci U S A. 1996;93:2724–2728. PubMed PMC

Ma W.-P., Kaiser M., Lyamicheva N., Schaefer J., Allawi H., Takova T. RNA template-dependent 5′ nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases. J Biol Chem. 2000;275:24693–24700. PubMed

Kermekchiev M., Kirilova L., Vail E., Barnes W. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37:e40. PubMed PMC

Isenbarger T., Finney M., Ros-Velazquez C., Handelsman J., Ruvkun G. Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol. 2008;74:840–849. PubMed PMC

Chakrabarti R. Novel PCR-enhancing compounds and their modes of action. In: Weissensteiner T., Griffin H., Griffin A., editors. PCR technology: current innovations. CRC Press; Boca Raton, FL: 2003.

Kang J., Lee M., Gorenstein D. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. J Biochem Biophys Methods. 2005;64:147–151. PubMed

Chevet E., Lemaitre G., Katinka D. Low concentration of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Res. 1995;23:3343–3344. PubMed PMC

Baskaran N., Kandpal R., Bhargava A., Glynn M., Bale A., Weissman S. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 1996;6:633–638. PubMed

Kovarova M., Draber P. New specificity and yield enhancer of polymerase chain reaction. Nucleic Acids Res. 2000;28:e70. PubMed PMC

Benita Y., Oosting R., Lok M., Wise M., Humphery-Smith I. Nucleic Acids Res. 2003;31:e99. PubMed PMC

Veal C., Freeman P., Jacobs K., Lankaster O., Jamain S., Leboyer M. A mechanistic basis for amplification differences between samples and between genome regions. BMC Genomics. 2012;13:455. PubMed PMC

McDowell D., Burns N., Parkes H. Localized sequence regions possessing high melting temperatures prevent the amplification of DNA mimic in competitive PCR. Nucleic Acids Res. 1998;26:3340. PubMed PMC

Loeb L., Preston B. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. PubMed

Fox G., Pechman K., Woese C. Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to prokaryotic systematics. Int J Syst Bacteriol. 1977;27:44–57.

Ludwig W., Schleifer K. Phylogeny of bacteria beyond the 16S rRNA standard. ASM News. 1999;65:752–757.

Pei A., Oberdorf W., Nossa C., Agarwal A., Chokshi P., Gerz E. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010;76:3886–3897. PubMed PMC

Gutell R., Larsen N., Woese C. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994;58:10–26. PubMed PMC

Wilson I. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741–3751. PubMed PMC

Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors – occurrence, properties and removal. J Appl Microbiol. 2012;113:1014–1026. PubMed

Allaeddini R. Forensic implications of PCR inhibition – a review. Forensic Sci Int Genet. 2012;6:297–305. PubMed

Demeke T., Jenkins R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem. 2010;396:1977–1990. PubMed

Kontanis E., Reed F. Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci. 2006;51:795–804. PubMed

Bar T., Stahlberg Muszta A., Kubista M. Kinetic Outlier Detection (KOD) in real-time PCR. Nucleic Acids Res. 2003;31:e105. PubMed PMC

Stahlberg A., Aman P., Ridell B., Mostad P., Kubista M. Quantitative real-time PCR method for detection of β-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clin Chem. 2003;49:51–59. PubMed

Huggett J., Novak T., Garson J., Green C., Morris-Jones S., Miller R. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res Notes. 2008;1:70. PubMed PMC

Opel K., Chung D., McCord B. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci. 2010;55:25–33. PubMed

Bourke M., Scherczinger C., Ladd C., Lee H. NaOH treatment to neutralize inhibitors of Taq polymerase. J Forensic Sci. 1999;44:1046–1050. PubMed

Sutlovic D., Gamulin S., Definis-Gojanovic M., Gugic D., Andjelinovic S. Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis. 2008;29:1467–1472. PubMed

Waterhouse R., Glover L. Differences in the hybridization pattern of Bacillus subtilis genes coding for rRNA depend on the method of DNA preparation. Appl Environ Microbiol. 1993;59:919–921. PubMed PMC

Bukala R., Model P., Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci U S A. 1984;81:105–109. PubMed PMC

Wernars K., Heuvelman C., Chakraborty T., Notermans S. Use of polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol. 1991;70:121–126. PubMed

Wilson I., Cooper J., Gilmour A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl Environ Microbiol. 1991;57:1793–1798. PubMed PMC

Hein I., Lehner A., Rieck P., Klein K., Brandl E., Warner M. Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl Environ Microbiol. 2001;67:3122–3126. PubMed PMC

Webster G., Newberry C., Fry J., Weightman A. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods. 2003;55:155–164. PubMed

Hoorfar J., Cook N., Malorny B., Wagner M., De Medici D., Abdulmawjood A. Diagnostic PCR: making internal amplification control mandatory. Lett Appl Microbiol. 2003;38:79–80. PubMed

Nolan T., Hands R., Ogunkolade W., Bustin S. SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acids preparations. Anal Biochem. 2006;351:308–310. PubMed

Kalle E., Gulevich A., Rensing C. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods. 2013;95:285–294. PubMed

Osborn M., Moore E., Timmis K. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol. 2000;2:39–50. PubMed

Nicolaisen M., Ramsing N. Denaturing gradient gel electrophoresis (DGGE) approaches to study diversity of ammonia-oxidizing bacteria. J Microbiol Methods. 2002;50:189–203. PubMed

Oros-Sichler M., Gomes N., Neuber G., Smalla K. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Methods. 2006;65:63–75. PubMed

Smalla K., Oros-Sichler M., Milling A., Heuer H., Baumgarte S., Becker R. Bacterial diversity of soil assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods. 2007;69:470–479. PubMed

Pinto A., Raskin L. PCR bias distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE. 2012;7:e43093. PubMed PMC

Cardinale M., Brusetti L., Quatrini P., Borin S., Puglia A., Rizzi A. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol. 2004;70:6147–6156. PubMed PMC

Balazs M., Ronavari A., Nemeth A., Bihari Z., Rutkai E., Bartos P. Effect of DNA polymerases on PCR-DGGE patterns. Int Biodeteriorat Biodegrad. 2013;84:244–249.

Marsh S., Albert E., Bodmer W., Bontrop R., Dupont B., Erlich H. Nomenclature for factors of the HLA System, 2004. Hum Immunol. 2005;66:571–636. PubMed

Lee M., Leslie D., Squirrell D. Internal and external controls for reagent validation. In: Edwards K., Logan J., Saunders N., editors. Real-time PCR: an essential guide. Horizon Bioscience; Norfolk, UK: 2005.

Nolan T., Novak T., Huggett J. Taking control of the polymerase chain reaction. In: Bustin S., editor. The PCR revolution. Basic technologies and applications. Cambridge University Press; Cambridge, UK: 2010.

Garsia-Martinez J., Acinas S., Anton A., Rodrigues-Valera F. Use of 16S–23S ribosomal genes spaser region in studies of prokaryotic diversity. J Microb Methods. 1999;36:55–64. PubMed

Christen R. Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. Microbes Environ. 2008;23:253–268. PubMed

Stranneheim H., Lundeberg J. Stepping stones in DNA sequencing. Biotechnol J. 2012;7:1063–1073. PubMed PMC

Hill T., Walsh K., Harris J., Moffett B. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43:1–11. PubMed

Charlton S., Giroux R., Hondred D., Lipton C., Worden K. The Analytical Environmental Immunochemical Consortium (AEIC) Secretariat, Dow AgroSciences; Indianapolis, IN: 2000. PCR validation and performance characteristics – AIC Biotech Consensus Paper.

Wang G., Wang Y. The frequency of chimeric molecules as a consequence of PCR amplification of 16S rRNA genes from different bacterial species. Microbiology. 1996;142:1107–1114. PubMed

Gilliland G., Perrin S., Blanchard K., Bunn H. Analysis of cytokine mRNA and DNA: detection and quantification by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87:2725–2729. PubMed PMC

Zimmermann K., Mannhalter J. Technical aspects of quantitative competitive PCR. Biotechniques. 1996;21:268–279. PubMed

Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–123. PubMed

Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. Genome Res. 1992;2:1–9. PubMed

Freeman W., Walker S., Vrana K. Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999;26:112–125. PubMed

Raeymaekers L. Basic principles of quantitative PCR. Mol Biotechnol. 2000;15:115–122. PubMed

Wong M., Medrano J. Real-time PCR for mRNA quantification. Biotechniques. 2005;39:75–85. PubMed

Raeymaekers L. Quantitative PCR: theoretical considerations with practical implications. Anal Biochem. 1993;214:582–585. PubMed

Willey J., Crawfird E., Jackson C., Weaver D., Hoban J., Khuder S. Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. Am J Respir Cell Mol Biol. 1998;19:6–17. PubMed

Bruggemann J., Stephen J., Chang Y.-J., Macnaughton S., Kowalchuk G., Kline E. Competitive PCR-DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. J Microbiol Methods. 2000;40:111–123. PubMed

Walsh P., Erlich H., Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1992;1:241–250. PubMed

Mutter G., Boynton K. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res. 1995;23:1411–1418. PubMed PMC

Liu Q., Thorland E., Sommer S. Inhibition of PCR amplification by a point mutation downstream of a primer. Biotechniques. 1997;22:292–300. PubMed

Barnard R., Futo V., Pecheniuk N., Slattery M., Walsh T. PCR bias toward the wild-type k-ras and p53 sequences: implications for PCR detection of mutations and cancer diagnosis. Biotechniques. 1998;25:684–691. PubMed

Liu W., Saint D. A new quantitative method of real-time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem. 2002;302:52–59. PubMed

Schmittgen T., Zakrajsek B., Mills A., Gorn V., Singer M., Reed M. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of end-point and real-time methods. Anal Biochem. 2000;285:194–204. PubMed

Dostal D., Rothblum K., Baker K. An improved analytical method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin, and angiotensinogen mRNA levels in various tissues. Anal Biochem. 1994;223:239–250. PubMed

Souaze F., Ntodou-Thome C., Rostene W., Forgez P. Quantitative RT-PCR: limits and accuracy. Biotechniques. 1996;21:280–285. PubMed

Mathieu-Daude F., Welsh J., Vort T., McClelland M. DNA rehybridization during PCR: the ‘C0t effect’ and its consequences. Nucleic Acids Res. 1996;24:2080–2086. PubMed PMC

Nedelman J., Heagerty P., Lawrence C. Quantitative PCR: procedures and precisions. Bull Math Biol. 1992;54:477–502.

Novga H., Rudi K. Potential influence of the first PCR cycles in real-time comparative gene qualifications. Biotechniques. 2004;37:246–253. PubMed

Nadkarni M., Martin E., Jacques N., Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. PubMed

Ruijter J., Ramakers C., Hoogaars W., Karlen Y., Bakker O., van den Hoff M. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. PubMed PMC

Malic A., Shahni R., Rodrigues-de-Ledesma A., Laftah A., Cunningham P. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun. 2011;412:1–7. PubMed

Chandler D., Fredrickson J., Brockman F. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol. 1997;6:475–482. PubMed

Klappenbach J., Dunbar J., Schmidt T. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–1333. PubMed PMC

Suzuki M., Taylor L., DeLong E. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assay. Appl Environ Microbiol. 2000;66:4605–4614. PubMed PMC

Liu C., Aziz M., Kachur S., Hsueh P.-R., Huang Y.-T., Keim P. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 2012;12:56. PubMed PMC

Liu C., Kachur S., Dwan M., Abraham A., Aziz M., Hsueh P.-R. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 2012;12:255. PubMed PMC

Manter D., Vivanco J. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods. 2007;71:7–14. PubMed

Bustin S. 2012. Definitive qPCR: basic principles.

Sykes P., Neoh S., Brisco M., Hughes E., Condon J., Morley A. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–449. PubMed

Morley A. Digital PCR: a brief history. Biomol Detect Quantif. 2014;1:1–2. PubMed PMC

Cochran W. Estimation of bacterial densities by means of the ‘most probable number’. Biometrics. 1950;6:105–116. PubMed

Tawfik D., Griffiths A. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 1998;16:652–656. PubMed

Willams R., Peisajovich S., Miller O., Magdassi S., Tawfik D., Griffiths A. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006;3:545–550. PubMed

Hori M., Fukano H., Suzuki Y. Uniform amplification of multiple DNAs by emulsion PCR. Biochem Biophys Res Commun. 2007;352:323–328. PubMed

Vogelstein B., Kinzler K. Digital PCR. Proc Natl Acad Sci U S A. 1999;96:9236–9241. PubMed PMC

Ottesen E., Hong J.-W., Quake S., Leadbetter J. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314:1464–1467. PubMed

Fraley S., Hardick J., Masek B., Athamanolap P., Rothman R., Gaydos C. Universal digital high-resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples. Nucleic Acids Res. 2013;41:e175. PubMed PMC

Pohl G., Shin I.-M. Principle and applications of digital PCR. Expert Rev Mol Diagn. 2004;4:41–47. PubMed

Huggett J., Foy C., Benes V., Emslie K., Garson J., Haynes R. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59:892–902. PubMed

Gill P., Kimpton C., A’Aloja E., Andersen J., Bär W., Brinkmann B. Report of the European DNA profiling group (EDNAP) – towards standardisation of short tandem repeat (STR) loci. Forensic Sci Int. 1994;65:51–59. PubMed

Muller C. Quality control in mutation analysis. The European Molecular Genetics Quality Network (EMQN) Eur J Pediatr. 2001;160:464–467. PubMed

Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet. 2001;29:365–371. PubMed

Bustin S., Benes V., Garson J., Hellemans J., Huggett J., Kubista M. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–622. PubMed

Pabinger S., Rödiger S., Kriegner A., Vierlinger K., Weinhäusel A. A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol Detect Quantif. 2014;1:23–33. PubMed PMC

Schloss P., Gevers D., Westcott S. Reducing the effects of PCR amplification and sequencing artefacts on 16S rRNA-based studies. PLoS ONE. 2011;6:e27310. PubMed PMC

Apfalter P., Reischl U., Hammerschlag M. In-house nucleic acid amplification assays in research: how much quality control is needed before one can rely upon the results? J Clin Microbiol. 2005;43:5835–5841. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis

. 2021 May 27 ; 11 (6) : . [epub] 20210527

High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing

. 2019 Oct ; 16 (10) : 1364-1376. [epub] 20190619

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace