Multi-template polymerase chain reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články
PubMed
27896140
PubMed Central
PMC5121205
DOI
10.1016/j.bdq.2014.11.002
PII: S2214-7535(14)00010-2
Knihovny.cz E-zdroje
- Klíčová slova
- CDCE, constant denaturing capillary electrophoresis, Chimera, DGGE, denaturing gradient gel electrophoresis, DHPLC, denaturing high-performance liquid chromatography, HPLC, high-performance liquid chromatography, Multi-template PCR, PAAG, polyacrylamide gel, SSCA, single strand conformation analysis, T-RFLP, terminal restriction fragment length polymorphism, TGGE, temperature gradient gel electrophoresis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Zobrazit více v PubMed
Chandler D. Redefining relativity: quantitative PCR at a low template concentrations for industrial and environmental microbiology. J Ind Microbiol Biotechnol. 1998;21:128–140.
Ludwig W. Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol. 2007;120:225–236. PubMed
Wagner A., Blackstone N., Cartwright P., Dick M., Misof B., Snow P. Survey of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol. 1994;43:250–261.
Nikolaev S., Berney J., Fahrni I., Boliver S., Poler S., Mylnikov A. The twilight of Heliozoa and rise of Rhizaria, a new supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A. 2004;101:8066–8071. PubMed PMC
Lenz T., Becker S. Simple approach to reduce PCR artifact formation leads to reliable genotyping of MHC and other highly polymorphic loci – implications for evolutionary analysis. Gene. 2008;427:117–123. PubMed
Yoon H., Grant J., Tekle Y., Wu M., Chaon B., Cole J. Broadly sampled multigene trees of eukaryotes. BMC Evol Biol. 2008;8:14. PubMed PMC
Jobling M., Gill P. Encoded evidence: DNA in forensic analysis. Nat Rev Genet. 2004;5:739–751. PubMed
Brooks-Wilson A., Goodfellow P., Povey S., Nevanlinna H., de Jong P., Goodfellow P. Rapid cloning and characterization of new chromosome 10 DNA markers by ALU element-mediated PCR. Genomics. 1990;7:614–620. PubMed
VanDevanter D., Warrener P., Bennet L., Schultz E., Coulter S., Garber R. Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol. 1996;34:1666–1671. PubMed PMC
Pompanon F., Bonin A., Bellemain E., Taberlet P. Genotyping errors: causes, consequences and solutions. Nat Genet. 2005;6:847–859. PubMed
Pace N. A molecular view of microbial diversity and the biosphere. Science. 1997;276:734–740. PubMed
Dawson S., Pace N. Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A. 2002;99:8324–8329. PubMed PMC
Doherty M., Costas B., McManus G., Katz L. Culture-independent assessment of planktonic ciliate diversity in costal northwest Atlantic waters. Aquat Microb Ecol. 2007;48:141–154.
Keohavong P., Thilly W. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989;86:9253–9257. PubMed PMC
Nagamine C., Chan K., Lau Y. A PCR artifact: generation of heteroduplexes. Am J Hum Genet. 1989;45:337–339. PubMed PMC
Jensen M., Straus N. Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. Genome Res. 1993;3:186–194. PubMed
Ruano G., Kidd K. Modeling of heteroduplex formation during PCR from mixtures of DNA templates. PCR Methods Appl. 1992;2:112–116. PubMed
Ogino S., Wilson R. Quantification of PCR bias caused by a single nucleotide polymorphism in SMN gene dosage analysis. J Mol Diagn. 2002;4:185–190. PubMed PMC
Kanagawa T. Bias and artefacts in multitemplate polymerase chain reactions (PCR) J Biosci Bioeng. 2003;96:317–323. PubMed
Acinas S., Sarma-Rupavtarm R., Klepac-Ceraj V., Polz M. PCR-induced sequence artefacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol. 2005;71:8966–8969. PubMed PMC
Michu E., Mrackova M., Vyskot B., Zluvova J. Reduction of heteroduplex formation in PCR amplification. Biol Plant. 2010;54:173–176.
Egert M., Friedrich M. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. Appl Environ Microbiol. 2003;69:2555–2562. PubMed PMC
Uejima H., Lee M., Gui H., Fienberg A. Hot-stop PCR: a simple and general assay for linear quantification of allele ratios. Nat Genet. 2000;25:375–376. PubMed
Shuldiner A., Nirula A., Roth J. Hybrid DNA artefacts from PCR of closely related target sequences. Nucleic Acids Res. 1989;17:4409. PubMed PMC
Meyerhans A., Vartanian J.-P., Wain-Hobson S. DNA recombination during PCR. Nucleic Acids Res. 1990;17:1687–1691. PubMed PMC
Pääbo S., Irwin D., Wilson A. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem. 1990;265:4718–4721. PubMed
Odelberg S.J., Weiss R.B., Hata A., White R. Template-switching during DNA synthesis by Thermus aquaticus DNA polymerase I. Nucleic Acids Res. 1995;11:2049–2057. PubMed PMC
Zylstra P., Rothenfluh H., Weiller G., Blanden R., Steele E. PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol Cell Biol. 1998;76:395–405. PubMed
Klug J., Wolf M., Beato M. Creating chimeric molecules by PCR directed homologous DNA recombination. Nucleic Acids Res. 1991;19:2793. PubMed PMC
Lahr D., Katz L. Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. Biotechniques. 2009;47:857–866. PubMed
Gorzer I., Guelly C., Trajanoski S., Puchhammer-Stockl E. The impact of PCR-generated recombination on diversity estimation of mixed viral populations by deep sequencing. J Virol Methods. 2010;169:248–252. PubMed
Fonseca V., Nichols B., Lallias D., Quince C., Carvalho G., Power D. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analysis. Nucleic Acids Res. 2012;40:e66. PubMed PMC
Hudenholtz P., Huber T. Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol. 2003;53:289–293. PubMed
Ashelford K., Chuzhanova N., Fry J., Jones A., Weightman A. At least 1 in 20 16S rRNA sequence records currently held in Public Repositories is estimated to contain substantial anomalies. Appl Environ Microbiol. 2005;71:7724–7736. PubMed PMC
Ashelford K., Chuzhanova N., Fry J., Jones A., Weightman A. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol. 2006;72:5734–5741. PubMed PMC
Ziegler A., Ehlers A., Forbes S., Trowsdale J., Volz A., Younger R. Polymorphism in olfactory receptor genes: a cautionary note. Hum Immunol. 2000;61:1281–1284. PubMed
Kennedy L., Ryvar R., Gaskell R., Addie D., Willoughby K., Carter S. Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics. 2002;54:348–352. PubMed
Bar T., Kubista M., Tichopad A. Validation of kinetics similarity in qPCR. Nucleic Acid Res. 2012;40:1395–1406. PubMed PMC
Gonzalez J., Portillo M., Belda-ferre P., Mira A. Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS ONE. 2012;7:e29973. PubMed PMC
Reysenbach A.-L., Giver L., Wickham G., Pace N. Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol. 1992;58:3417–3418. PubMed PMC
Raeymaekers L. A commentary on the practical applications of quantitative PCR. Genome Res. 1995;5:91–94. PubMed
Suzuki M., Giovannoni S. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996;62:625–630. PubMed PMC
Polz M., Cavanaugh C. Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol. 1998;64:3724–3730. PubMed PMC
Hong S.-H., Bunge J., Leslin C., Jeon S., Epstain S. ISME J. 2009;3:1365–1373. PubMed
Weissensteiner T., Lanchbury J. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques. 1996;21:1102–1108. PubMed
Booth C., Pienaar E., Termaat J., Whitney S., Louw T., Viljoen H. Efficiency of the polymerase chain reaction. Chem Eng Sci. 2010;65:4996–5006. PubMed PMC
Egert M., Friedrich M. Post-amplification Klenow fragment treatment alleviates PCR bias caused by partially single-stranded amplicons. J Microbiol Methods. 2005;61:69–75. PubMed
Shannon B., Cohen R., Garrett K. Influence of 16S rDNA primer sequence mismatches on the spectrum of bacterial genera detected in prostate tissue by universal eubacterial PCR. Prostate. 2008;68:1487–1491. PubMed
Neilson J., Jordan F., Maier R. Analysis of artefacts suggests DGGE should not be used for quantitative diversity analysis. J Microbiol Methods. 2013;92:256–263. PubMed PMC
Kwok S., Kellogg D., McKinney N., Spasic D., Goda L., Levenson C. Effect of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990;18:999–1005. PubMed PMC
Echols H., Goodman M. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477–511. PubMed
Kunkel T., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. PubMed
Johnson S., Beese L. Structures of mismatch replication errors observed in a DNA polymerase. Cell. 2004;116:803–816. PubMed
Morales S., Holben W. Empirical testing of 16S rRNA gene PCR primer pair reveals variance in target specificity and efficacy not suggested by in silico analysis. Appl Environ Microbiol. 2009;75:2677–2683. PubMed PMC
Ashrafi E., Paul N. Improved PCR specificity with hot start PCR primers. Biotechniques. 2009;47:789–790. PubMed
Henegariu O., Heerema N., Dlouhy S., Vance G., Vogt P. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23:504–511. PubMed
Eckert K., Kunkel T. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1991;1:17–24. PubMed
Ling L., Keohavong P., Dias C., Thilly W. Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases. Genome Res. 1991;1:63–69. PubMed
Cline J., Braman J., Hogrefe H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24:3546–3551. PubMed PMC
Flaman M., Frebourg T., Moreau V., Charbonnier F., Martin C., Ishioka C. A rapid PCR fidelity assay. Nucleic Acids Res. 1994;22:3259–3260. PubMed PMC
Arezi B., Xing W., Sorge J., Hogrefe H. Amplification efficiency of thermostable DNA polymerases. Anal Biochem. 2003;321:226–235. PubMed
Dunning A., Talmud P., Humphries S. Errors in the polymerase chain reaction. Nucleic Acids Res. 1988;16:10393. PubMed PMC
Cha R., Thilly W. Specificity, efficiency, and fidelity of PCR. Genome Res. 1993;3:S18–S29. PubMed
Wintzingerode F., Göbel U., Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev. 1997;21:213–229. PubMed
Bloch W. A biochemical perspective of the polymerase chain reaction. Biochemistry. 1991;30:2735–2747. PubMed
Loewen P., Switala J. Template secondary structure can increase the error frequency of the DNA polymerase from Thermus aquaticus. Gene. 1995;164:59–63. PubMed
Qiu X., Wu L., Huang H., McDonel P., Palumbo A., Tiedje J. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol. 2001;67:880–887. PubMed PMC
Pavlov A., Pavlova N., Kozyavkin S., Slesarev A. Recent developments in the optimization of the thermostable DNA polymerases for efficient applications. Trends Biotechnol. 2004;22:253–260. PubMed
Dawson K., Thorpe R., Malhotra A. Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS ONE. 2010;5:e15204. PubMed PMC
Clayton R., Sutton G., Hinkle P., Bult C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequence may not adequately represent prokaryotic taxa. Int J Syst Bacteriol. 1995;45:595–599. PubMed
Myers T., Gelfand D. Reverse transcription and DNA amplification by Thermus thermophilus DNA polymerase. Biochemistry. 1991;30:7661–7666. PubMed
Auer T., Sninsky J., Gelfand D., Myers T. Selective amplification of RNA utilizing the nucleotide analog dITP and Thermus thermophilus DNA polymerase. Nucleic Acids Res. 1996;24:5021–5025. PubMed PMC
Grabko V., Chistyakova L., Lyapustin V., Korobko V., Miroshnikov A. Reverse transcription, amplification and sequencing of poliovirus RNA by Taq DNA polymerase. FEBS Lett. 1996;387:189–192. PubMed
Lyamichev V., Brow M., Dahlberg J. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993;260:778–783. PubMed
Tombline G., Bellizzi D., Sgaramella V. Heterogeneity of primer extension products in asymmetric PCR is due to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops. Proc Natl Acad Sci U S A. 1996;93:2724–2728. PubMed PMC
Ma W.-P., Kaiser M., Lyamicheva N., Schaefer J., Allawi H., Takova T. RNA template-dependent 5′ nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases. J Biol Chem. 2000;275:24693–24700. PubMed
Kermekchiev M., Kirilova L., Vail E., Barnes W. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 2009;37:e40. PubMed PMC
Isenbarger T., Finney M., Ros-Velazquez C., Handelsman J., Ruvkun G. Miniprimer PCR, a new lens for viewing the microbial world. Appl Environ Microbiol. 2008;74:840–849. PubMed PMC
Chakrabarti R. Novel PCR-enhancing compounds and their modes of action. In: Weissensteiner T., Griffin H., Griffin A., editors. PCR technology: current innovations. CRC Press; Boca Raton, FL: 2003.
Kang J., Lee M., Gorenstein D. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. J Biochem Biophys Methods. 2005;64:147–151. PubMed
Chevet E., Lemaitre G., Katinka D. Low concentration of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Res. 1995;23:3343–3344. PubMed PMC
Baskaran N., Kandpal R., Bhargava A., Glynn M., Bale A., Weissman S. Uniform amplification of a mixture of deoxyribonucleic acids with varying GC content. Genome Res. 1996;6:633–638. PubMed
Kovarova M., Draber P. New specificity and yield enhancer of polymerase chain reaction. Nucleic Acids Res. 2000;28:e70. PubMed PMC
Benita Y., Oosting R., Lok M., Wise M., Humphery-Smith I. Nucleic Acids Res. 2003;31:e99. PubMed PMC
Veal C., Freeman P., Jacobs K., Lankaster O., Jamain S., Leboyer M. A mechanistic basis for amplification differences between samples and between genome regions. BMC Genomics. 2012;13:455. PubMed PMC
McDowell D., Burns N., Parkes H. Localized sequence regions possessing high melting temperatures prevent the amplification of DNA mimic in competitive PCR. Nucleic Acids Res. 1998;26:3340. PubMed PMC
Loeb L., Preston B. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. PubMed
Fox G., Pechman K., Woese C. Comparative cataloguing of 16S ribosomal ribonucleic acid: molecular approach to prokaryotic systematics. Int J Syst Bacteriol. 1977;27:44–57.
Ludwig W., Schleifer K. Phylogeny of bacteria beyond the 16S rRNA standard. ASM News. 1999;65:752–757.
Pei A., Oberdorf W., Nossa C., Agarwal A., Chokshi P., Gerz E. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010;76:3886–3897. PubMed PMC
Gutell R., Larsen N., Woese C. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994;58:10–26. PubMed PMC
Wilson I. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741–3751. PubMed PMC
Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors – occurrence, properties and removal. J Appl Microbiol. 2012;113:1014–1026. PubMed
Allaeddini R. Forensic implications of PCR inhibition – a review. Forensic Sci Int Genet. 2012;6:297–305. PubMed
Demeke T., Jenkins R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem. 2010;396:1977–1990. PubMed
Kontanis E., Reed F. Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci. 2006;51:795–804. PubMed
Bar T., Stahlberg Muszta A., Kubista M. Kinetic Outlier Detection (KOD) in real-time PCR. Nucleic Acids Res. 2003;31:e105. PubMed PMC
Stahlberg A., Aman P., Ridell B., Mostad P., Kubista M. Quantitative real-time PCR method for detection of β-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clin Chem. 2003;49:51–59. PubMed
Huggett J., Novak T., Garson J., Green C., Morris-Jones S., Miller R. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res Notes. 2008;1:70. PubMed PMC
Opel K., Chung D., McCord B. A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci. 2010;55:25–33. PubMed
Bourke M., Scherczinger C., Ladd C., Lee H. NaOH treatment to neutralize inhibitors of Taq polymerase. J Forensic Sci. 1999;44:1046–1050. PubMed
Sutlovic D., Gamulin S., Definis-Gojanovic M., Gugic D., Andjelinovic S. Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis. 2008;29:1467–1472. PubMed
Waterhouse R., Glover L. Differences in the hybridization pattern of Bacillus subtilis genes coding for rRNA depend on the method of DNA preparation. Appl Environ Microbiol. 1993;59:919–921. PubMed PMC
Bukala R., Model P., Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci U S A. 1984;81:105–109. PubMed PMC
Wernars K., Heuvelman C., Chakraborty T., Notermans S. Use of polymerase chain reaction for direct detection of Listeria monocytogenes in soft cheese. J Appl Bacteriol. 1991;70:121–126. PubMed
Wilson I., Cooper J., Gilmour A. Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entC1 and the thermonuclease gene nuc. Appl Environ Microbiol. 1991;57:1793–1798. PubMed PMC
Hein I., Lehner A., Rieck P., Klein K., Brandl E., Warner M. Comparison of different approaches to quantify Staphylococcus aureus cells by real-time quantitative PCR and application of this technique for examination of cheese. Appl Environ Microbiol. 2001;67:3122–3126. PubMed PMC
Webster G., Newberry C., Fry J., Weightman A. Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods. 2003;55:155–164. PubMed
Hoorfar J., Cook N., Malorny B., Wagner M., De Medici D., Abdulmawjood A. Diagnostic PCR: making internal amplification control mandatory. Lett Appl Microbiol. 2003;38:79–80. PubMed
Nolan T., Hands R., Ogunkolade W., Bustin S. SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acids preparations. Anal Biochem. 2006;351:308–310. PubMed
Kalle E., Gulevich A., Rensing C. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods. 2013;95:285–294. PubMed
Osborn M., Moore E., Timmis K. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol. 2000;2:39–50. PubMed
Nicolaisen M., Ramsing N. Denaturing gradient gel electrophoresis (DGGE) approaches to study diversity of ammonia-oxidizing bacteria. J Microbiol Methods. 2002;50:189–203. PubMed
Oros-Sichler M., Gomes N., Neuber G., Smalla K. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Methods. 2006;65:63–75. PubMed
Smalla K., Oros-Sichler M., Milling A., Heuer H., Baumgarte S., Becker R. Bacterial diversity of soil assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods. 2007;69:470–479. PubMed
Pinto A., Raskin L. PCR bias distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE. 2012;7:e43093. PubMed PMC
Cardinale M., Brusetti L., Quatrini P., Borin S., Puglia A., Rizzi A. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol. 2004;70:6147–6156. PubMed PMC
Balazs M., Ronavari A., Nemeth A., Bihari Z., Rutkai E., Bartos P. Effect of DNA polymerases on PCR-DGGE patterns. Int Biodeteriorat Biodegrad. 2013;84:244–249.
Marsh S., Albert E., Bodmer W., Bontrop R., Dupont B., Erlich H. Nomenclature for factors of the HLA System, 2004. Hum Immunol. 2005;66:571–636. PubMed
Lee M., Leslie D., Squirrell D. Internal and external controls for reagent validation. In: Edwards K., Logan J., Saunders N., editors. Real-time PCR: an essential guide. Horizon Bioscience; Norfolk, UK: 2005.
Nolan T., Novak T., Huggett J. Taking control of the polymerase chain reaction. In: Bustin S., editor. The PCR revolution. Basic technologies and applications. Cambridge University Press; Cambridge, UK: 2010.
Garsia-Martinez J., Acinas S., Anton A., Rodrigues-Valera F. Use of 16S–23S ribosomal genes spaser region in studies of prokaryotic diversity. J Microb Methods. 1999;36:55–64. PubMed
Christen R. Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. Microbes Environ. 2008;23:253–268. PubMed
Stranneheim H., Lundeberg J. Stepping stones in DNA sequencing. Biotechnol J. 2012;7:1063–1073. PubMed PMC
Hill T., Walsh K., Harris J., Moffett B. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43:1–11. PubMed
Charlton S., Giroux R., Hondred D., Lipton C., Worden K. The Analytical Environmental Immunochemical Consortium (AEIC) Secretariat, Dow AgroSciences; Indianapolis, IN: 2000. PCR validation and performance characteristics – AIC Biotech Consensus Paper.
Wang G., Wang Y. The frequency of chimeric molecules as a consequence of PCR amplification of 16S rRNA genes from different bacterial species. Microbiology. 1996;142:1107–1114. PubMed
Gilliland G., Perrin S., Blanchard K., Bunn H. Analysis of cytokine mRNA and DNA: detection and quantification by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87:2725–2729. PubMed PMC
Zimmermann K., Mannhalter J. Technical aspects of quantitative competitive PCR. Biotechniques. 1996;21:268–279. PubMed
Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–123. PubMed
Ferre F. Quantitative or semi-quantitative PCR: reality versus myth. Genome Res. 1992;2:1–9. PubMed
Freeman W., Walker S., Vrana K. Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999;26:112–125. PubMed
Raeymaekers L. Basic principles of quantitative PCR. Mol Biotechnol. 2000;15:115–122. PubMed
Wong M., Medrano J. Real-time PCR for mRNA quantification. Biotechniques. 2005;39:75–85. PubMed
Raeymaekers L. Quantitative PCR: theoretical considerations with practical implications. Anal Biochem. 1993;214:582–585. PubMed
Willey J., Crawfird E., Jackson C., Weaver D., Hoban J., Khuder S. Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. Am J Respir Cell Mol Biol. 1998;19:6–17. PubMed
Bruggemann J., Stephen J., Chang Y.-J., Macnaughton S., Kowalchuk G., Kline E. Competitive PCR-DGGE analysis of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. J Microbiol Methods. 2000;40:111–123. PubMed
Walsh P., Erlich H., Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl. 1992;1:241–250. PubMed
Mutter G., Boynton K. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucleic Acids Res. 1995;23:1411–1418. PubMed PMC
Liu Q., Thorland E., Sommer S. Inhibition of PCR amplification by a point mutation downstream of a primer. Biotechniques. 1997;22:292–300. PubMed
Barnard R., Futo V., Pecheniuk N., Slattery M., Walsh T. PCR bias toward the wild-type k-ras and p53 sequences: implications for PCR detection of mutations and cancer diagnosis. Biotechniques. 1998;25:684–691. PubMed
Liu W., Saint D. A new quantitative method of real-time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem. 2002;302:52–59. PubMed
Schmittgen T., Zakrajsek B., Mills A., Gorn V., Singer M., Reed M. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of end-point and real-time methods. Anal Biochem. 2000;285:194–204. PubMed
Dostal D., Rothblum K., Baker K. An improved analytical method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin, and angiotensinogen mRNA levels in various tissues. Anal Biochem. 1994;223:239–250. PubMed
Souaze F., Ntodou-Thome C., Rostene W., Forgez P. Quantitative RT-PCR: limits and accuracy. Biotechniques. 1996;21:280–285. PubMed
Mathieu-Daude F., Welsh J., Vort T., McClelland M. DNA rehybridization during PCR: the ‘C0t effect’ and its consequences. Nucleic Acids Res. 1996;24:2080–2086. PubMed PMC
Nedelman J., Heagerty P., Lawrence C. Quantitative PCR: procedures and precisions. Bull Math Biol. 1992;54:477–502.
Novga H., Rudi K. Potential influence of the first PCR cycles in real-time comparative gene qualifications. Biotechniques. 2004;37:246–253. PubMed
Nadkarni M., Martin E., Jacques N., Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. PubMed
Ruijter J., Ramakers C., Hoogaars W., Karlen Y., Bakker O., van den Hoff M. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45. PubMed PMC
Malic A., Shahni R., Rodrigues-de-Ledesma A., Laftah A., Cunningham P. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun. 2011;412:1–7. PubMed
Chandler D., Fredrickson J., Brockman F. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol. 1997;6:475–482. PubMed
Klappenbach J., Dunbar J., Schmidt T. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol. 2000;66:1328–1333. PubMed PMC
Suzuki M., Taylor L., DeLong E. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assay. Appl Environ Microbiol. 2000;66:4605–4614. PubMed PMC
Liu C., Aziz M., Kachur S., Hsueh P.-R., Huang Y.-T., Keim P. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 2012;12:56. PubMed PMC
Liu C., Kachur S., Dwan M., Abraham A., Aziz M., Hsueh P.-R. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 2012;12:255. PubMed PMC
Manter D., Vivanco J. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Methods. 2007;71:7–14. PubMed
Bustin S. 2012. Definitive qPCR: basic principles.
Sykes P., Neoh S., Brisco M., Hughes E., Condon J., Morley A. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13:444–449. PubMed
Morley A. Digital PCR: a brief history. Biomol Detect Quantif. 2014;1:1–2. PubMed PMC
Cochran W. Estimation of bacterial densities by means of the ‘most probable number’. Biometrics. 1950;6:105–116. PubMed
Tawfik D., Griffiths A. Man-made cell-like compartments for molecular evolution. Nat Biotechnol. 1998;16:652–656. PubMed
Willams R., Peisajovich S., Miller O., Magdassi S., Tawfik D., Griffiths A. Amplification of complex gene libraries by emulsion PCR. Nat Methods. 2006;3:545–550. PubMed
Hori M., Fukano H., Suzuki Y. Uniform amplification of multiple DNAs by emulsion PCR. Biochem Biophys Res Commun. 2007;352:323–328. PubMed
Vogelstein B., Kinzler K. Digital PCR. Proc Natl Acad Sci U S A. 1999;96:9236–9241. PubMed PMC
Ottesen E., Hong J.-W., Quake S., Leadbetter J. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314:1464–1467. PubMed
Fraley S., Hardick J., Masek B., Athamanolap P., Rothman R., Gaydos C. Universal digital high-resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples. Nucleic Acids Res. 2013;41:e175. PubMed PMC
Pohl G., Shin I.-M. Principle and applications of digital PCR. Expert Rev Mol Diagn. 2004;4:41–47. PubMed
Huggett J., Foy C., Benes V., Emslie K., Garson J., Haynes R. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59:892–902. PubMed
Gill P., Kimpton C., A’Aloja E., Andersen J., Bär W., Brinkmann B. Report of the European DNA profiling group (EDNAP) – towards standardisation of short tandem repeat (STR) loci. Forensic Sci Int. 1994;65:51–59. PubMed
Muller C. Quality control in mutation analysis. The European Molecular Genetics Quality Network (EMQN) Eur J Pediatr. 2001;160:464–467. PubMed
Brazma A., Hingamp P., Quackenbush J., Sherlock G., Spellman P., Stoeckert C. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet. 2001;29:365–371. PubMed
Bustin S., Benes V., Garson J., Hellemans J., Huggett J., Kubista M. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–622. PubMed
Pabinger S., Rödiger S., Kriegner A., Vierlinger K., Weinhäusel A. A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol Detect Quantif. 2014;1:23–33. PubMed PMC
Schloss P., Gevers D., Westcott S. Reducing the effects of PCR amplification and sequencing artefacts on 16S rRNA-based studies. PLoS ONE. 2011;6:e27310. PubMed PMC
Apfalter P., Reischl U., Hammerschlag M. In-house nucleic acid amplification assays in research: how much quality control is needed before one can rely upon the results? J Clin Microbiol. 2005;43:5835–5841. PubMed PMC
Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis
High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing