Pyrido-Fused Deazapurine Bases: Synthesis and Glycosylation of 4-Substituted 9H-Pyrido[2',3':4,5]- and Pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidines

. 2020 Oct 13 ; 5 (40) : 26278-26286. [epub] 20201002

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33073155

Two isomeric sets of 4-substituted pyridopyrrolopyrimidine nucleobases were prepared through nucleophilic substitutions or cross-coupling reactions of 4-chloropyridopyrrolopyrimidines. The corresponding 4-amino-pyridopyrrolopyrimidines were glycosylated with 5-O-tritylribose using the modified Mitsunobu protocol. Several examples of the title heterocycles showed blue or green fluorescence. Testing of the pyridopyrrolopyrimidine nucleobases for the cytotoxic effect revealed micromolar activity of 4-benzofuryl derivatives in both series, preferentially in multidrug-resistant cancers.

Zobrazit více v PubMed

De Coen L. M.; Heugebaert T. S. A.; García D.; Stevens C. V. Synthetic Entries to and Biological Activity of Pyrrolopyrimidines. Chem. Rev. 2016, 116, 80–139. 10.1021/acs.chemrev.5b00483. PubMed DOI

Perlíková P.; Hocek M. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) as a privileged scaffold in design of antitumor and antiviral nucleosides. Med. Res. Rev. 2017, 37, 1429–1460. 10.1002/med.21465. PubMed DOI PMC

Gangjee A.; Zaware N.; Raghavan S.; Ihnat M.; Shenoy S.; Kisliuk R. L. Single Agents with Designed Combination Chemotherapy Potential: Synthesis and Evaluation of Substituted Pyrimido[4,5-b]Indoles as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents. J. Med. Chem. 2010, 53, 1563–1578. 10.1021/jm9011142. PubMed DOI PMC

Fischer T.; Krüger T.; Najjar A.; Totzke F.; Schächtele C.; Sippl W.; Ritter C.; Hilgeroth A. Discovery of Novel Substituted Benzo-Anellated 4-Benzylamino Pyrrolopyrimidines as Dual EGFR and VEGFR2 Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 2708–2712. 10.1016/j.bmcl.2017.04.053. PubMed DOI

Gangjee A.; Zaware N.; Raghavan S.; Disch B. C.; Thorpe J. E.; Bastian A.; Ihnat M. A. Synthesis and Biological Activity of 5-Chloro-N4-Substituted Phenyl-9H-Pyrimido[4,5-b]Indole-2,4-Diamines as Vascular Endothelial Growth Factor Receptor-2 Inhibitors and Antiangiogenic Agents. Bioorg. Med. Chem. 2013, 21, 1857–1864. 10.1016/j.bmc.2013.01.040. PubMed DOI PMC

Zhao Y.; Bai L.; Liu L.; McEachern D.; Stuckey J. A.; Meagher J. L.; Yang C.-Y.; Ran X.; Zhou B.; Hu Y.; Li X.; Wen B.; Zhao T.; Li S.; Sun D.; Wang S. Structure-Based Discovery of 4-(6-Methoxy-2-Methyl-4-(Quinolin-4-yl)-9H-Pyrimido[4,5-b]Indol-7-yl)-3,5-Dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. J. Med. Chem. 2017, 60, 3887–3901. 10.1021/acs.jmedchem.7b00193. PubMed DOI PMC

Rohena C.; Risinger A.; Devambatla R.; Dybdal-Hargreaves N.; Kaul R.; Choudhary S.; Gangjee A.; Mooberry S. Janus Compounds, 5-Chloro-N4-Methyl-N4-Aryl-9H-Pyrimido[4,5-b]Indole-2,4-Diamines, Cause Both Microtubule Depolymerizing and Stabilizing Effects. Molecules 2016, 21, 1661–1677. 10.3390/molecules21121661. PubMed DOI PMC

Gangjee A.; Zaware N.; Devambatla R. K. V.; Raghavan S.; Westbrook C. D.; Dybdal-Hargreaves N. F.; Hamel E.; Mooberry S. L. Synthesis of N4-(Substituted Phenyl)-N4-Alkyl/Desalkyl-9H-Pyrimido[4,5-b]Indole-2,4-Diamines and Identification of New Microtubule Disrupting Compounds That Are Effective against Multidrug Resistant Cells. Bioorg. Med. Chem. 2013, 21, 891–902. 10.1016/j.bmc.2012.12.010. PubMed DOI PMC

Tari L. W.; Li X.; Trzoss M.; Bensen D. C.; Chen Z.; Lam T.; Zhang J.; Lee S. J.; Hough G.; Phillipson D.; Akers-Rodriguez S.; Cunningham M. L.; Kwan B. P.; Nelson K. J.; Castellano A.; Locke J. B.; Brown-Driver V.; Murphy T. M.; Ong V. S.; Pillar C. M.; Shinabarger D. L.; Nix J.; Lightstone F. C.; Wong S. E.; Nguyen T. B.; Shaw K. J.; Finn J. Tricyclic GyrB/ParE (TriBE) Inhibitors: A New Class of Broad-Spectrum Dual-Targeting Antibacterial Agents. PLoS One 2013, 8, e8440910.1371/journal.pone.0084409. PubMed DOI PMC

Tessier P. R.; Nicolau D. P. In Vitro Activity of Novel Gyrase Inhibitors against a Highly Resistant Population of Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 2887–2889. 10.1128/aac.01740-12. PubMed DOI PMC

Zaware N.; Sharma H.; Yang J.; Devambatla R. K. V.; Queener S. F.; Anderson K. S.; Gangjee A. Discovery of Potent and Selective Inhibitors of Toxoplasma Gondii Thymidylate Synthase for Opportunistic Infections. ACS Med. Chem. Lett. 2013, 4, 1148–1151. 10.1021/ml400208v. PubMed DOI PMC

Zaware N.; Kisliuk R.; Bastian A.; Ihnat M. A.; Gangjee A. Synthesis and Evaluation of 5-(Arylthio)-9H-Pyrimido[4,5-b]Indole-2,4-Diamines as Receptor Tyrosine Kinase and Thymidylate Synthase Inhibitors and as Antitumor Agents. Bioorg. Med. Chem. Lett. 2017, 27, 1602–1607. 10.1016/j.bmcl.2017.02.018. PubMed DOI PMC

Tichý M.; Smoleń S.; Deingruber T.; Džubák P.; Pohl R.; Slavětínská L. P.; Hajdúch M.; Hocek M. Thienopyrrolo[2, 3-d ]pyrimidines, New Tricyclic Nucleobase Analogues: Synthesis and Biological Activities. ChemistrySelect 2018, 3, 9144–9149. 10.1002/slct.201802190. DOI

Li Z.; Wang X.; Eksterowicz J.; Gribble M. W.; Alba G. Q.; Ayres M.; Carlson T. J.; Chen A.; Chen X.; Cho R.; Connors R. V.; DeGraffenreid M.; Deignan J. T.; Duquette J.; Fan P.; Fisher B.; Fu J.; Huard J. N.; Kaizerman J.; Keegan K. S.; Li C.; Li K.; Li Y.; Liang L.; Liu W.; Lively S. E.; Lo M.-C.; Ma J.; McMinn D. L.; Mihalic J. T.; Modi K.; Ngo R.; Pattabiraman K.; Piper D. E.; Queva C.; Ragains M. L.; Suchomel J.; Thibault S.; Walker N.; Wang X.; Wang Z.; Wanska M.; Wehn P. M.; Weidner M. F.; Zhang A. J.; Zhao X.; Kamb A.; Wickramasinghe D.; Dai K.; McGee L. R.; Medina J. C. Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3. J. Med. Chem. 2014, 57, 3430–3449. 10.1021/jm500118j. PubMed DOI

Reader J. C.; Matthews T. P.; Klair S.; Cheung K.-M. J.; Scanlon J.; Proisy N.; Addison G.; Ellard J.; Piton N.; Taylor S.; Cherry M.; Fisher M.; Boxall K.; Burns S.; Walton M. I.; Westwood I. M.; Hayes A.; Eve P.; Valenti M.; de Haven Brandon A.; Box G.; van Montfort R. L. M.; Williams D. H.; Aherne G. W.; Raynaud F. I.; Eccles S. A.; Garrett M. D.; Collins I. Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing. J. Med. Chem. 2011, 54, 8328–8342. 10.1021/jm2007326. PubMed DOI PMC

Im H. K.; Im W. B.; Carter D. B.; Schwartz T. M.; Bundy G. L.; Von Voigtlander P. F. PNU-107484A with α isoform-dependent functional changes inαxβ2γ2 subtypes of rat recombinant GABAA receptors. Br. J. Pharmacol. 1997, 122, 821–824. 10.1038/sj.bjp.0701450. PubMed DOI PMC

Wang S.; Zhao Y.; Zhou B.; Aguilar A.; Liu L.; Bai L.; Mceachern D.; Sun D.; Wen B.; Luo R.; Zhao T.; Chinnaiyan A.; Asangani I. A.; Stuckey J.; Meagher J. L.; Ran X.. 9h-pyrimido[4,5-b]indoles and related analogs as bet bromodomain inhibitors WO 2015131005 A1, February 27, 2015.

Asadi A.; Patrick B. O.; Perrin D. M. ^C quartet–a DNA-inspired Janus-GC heterocycle: synthesis, structural analysis, and self-organization. J. Am. Chem. Soc. 2008, 130, 12860–12861. 10.1021/ja8047128. PubMed DOI

Tichý M.; Smoleń S.; Tloušt’ová E.; Pohl R.; Oždian T.; Hejtmánková K.; Lišková B.; Gurská S.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytostatic and Antiviral Profiling of Thieno-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2017, 60, 2411–2424. 10.1021/acs.jmedchem.6b01766. PubMed DOI

Tokarenko A.; Lišková B.; Smoleń S.; Táborská N.; Tichý M.; Gurská S.; Perlíková P.; Frydrych I.; Tloušt’ová E.; Znojek P.; Mertlíková-Kaiserová H.; Poštová Slavětínská L.; Pohl R.; Klepetářová B.; Khalid N.-U. -A.; Wenren Y.; Laposa R. R.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Profiling of Pyrrolo- and Furo-Fused 7-Deazapurine Ribonucleosides. J. Med. Chem. 2018, 61, 9347–9359. 10.1021/acs.jmedchem.8b01258. PubMed DOI

Fleuti M.; Bártová K.; Slavětínská L. P.; Tloušt’ová E.; Tichý M.; Gurská S.; Pavliš P.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Biological Profiling of Pyrazolo-fused 7-Deazapurine Nucleosides. J. Org. Chem. 2020, 85, 10539–10551. 10.1021/acs.joc.0c00928. PubMed DOI

Tichý M.; Pohl R.; Xu H. Y.; Chen Y.-L.; Yokokawa F.; Shi P.-Y.; Hocek M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem. 2012, 20, 6123–6133. 10.1016/j.bmc.2012.08.021. PubMed DOI

Tichý M.; Pohl R.; Tloušt’ová E.; Weber J.; Bahador G.; Lee Y.-J.; Hocek M. Synthesis and biological activity of benzo-fused 7-deazaadenosine analogues. 5- and 6-substituted 4-amino- or 4-alkylpyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem. 2013, 21, 5362–5372. 10.1016/j.bmc.2013.06.011. PubMed DOI

Veselovská L.; Kudlová N.; Gurská S.; Lišková B.; Medvedíková M.; Hodek O.; Tloušt’ová E.; Milisavljevic N.; Tichý M.; Perlíková P.; Mertlíková-Kaiserová H.; Trylèová J.; Pohl R.; Klepetáøová B.; Džubák P.; Hajdúch M.; Hocek M. Synthesis and Cytotoxic and Antiviral Activity Profiling of All-Four Isomeric Series of Pyrido-Fused 7-Deazapurine Ribonucleosides. Chem.—Eur. J. 2020, 10.1002/chem.202001124. PubMed DOI

Naesens L.; Guddat L. W.; Keough D. T.; van Kuilenburg A. B. P.; Meijer J.; Vande Voorde J.; Balzarini J. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir). Mol. Pharmacol. 2013, 84, 615–629. 10.1124/mol.113.087247. PubMed DOI

Keough D. T.; Skinner-Adams T.; Jones M. K.; Ng A.-L.; Brereton I. M.; Guddat L. W.; de Jersey J. Lead compounds for antimalarial chemotherapy: purine base analogs discriminate between human and P. falciparum 6-oxopurine phosphoribosyltransferases. J. Med. Chem. 2006, 49, 7479–7486. 10.1021/jm061012j. PubMed DOI

Fotoohi A. K.; Coulthard S. A.; Albertioni F. Thiopurines: factors influencing toxicity and response. Biochem. Pharmacol. 2010, 79, 1211–1220. 10.1016/j.bcp.2010.01.006. PubMed DOI

Downey A. M.; Richter C.; Pohl R.; Mahrwald R.; Hocek M. Direct One-Pot Synthesis of Nucleosides from Unprotected or 5-O-Monoprotected D-Ribose. Org. Lett. 2015, 17, 4604–4607. 10.1021/acs.orglett.5b02332. PubMed DOI

Downey A. M.; Pohl R.; Roithová J.; Hocek M. Synthesis of Nucleosides through Direct Glycosylation of Nucleobases with 5-O-Monoprotected or 5-Modified Ribose: Improved Protocol, Scope, and Mechanism. Chem.—Eur. J. 2017, 23, 3910–3917. 10.1002/chem.201604955. PubMed DOI

Sabat N.; Smoleń S.; Nauš P.; Perlíková P.; Cebová M.; Poštová Slavětínská L.; Hocek M. Synthesis of 2,6-Substituted 7-(Het)aryl-7-deazapurine Nucleobases (2,4-Disubstituted 5-(Het)aryl-pyrrolo[2,3-d]pyrimidines). Synthesis 2017, 49, 4623–4650. 10.1055/s-0036-1588443. DOI

Nosková V.; Džubák P.; Kuzmina G.; Ludkova A.; Stehlik D.; Trojanec R.; Janostakova A.; Korinkova G.; Mihal V.; Hajduch M. In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma 2002, 49, 418–425. PubMed

Sabat N.; Nauš P.; Matyašovský J.; Dziuba D.; Poštová Slavìtínská L.; Hocek M. Synthesis 2016, 48, 1029–1045. 10.1055/s-0035-1561287. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...