-
Something wrong with this record ?
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
V. Obsilova, T. Obsil
Status minimal Language English Country Czech Republic
Document type Journal Article, Review
NLK
Directory of Open Access Journals
from 1991
Free Medical Journals
from 1998
PubMed Central
from 2020
ProQuest Central
from 2005-01-01
Medline Complete (EBSCOhost)
from 2006-01-01
Nursing & Allied Health Database (ProQuest)
from 2005-01-01
Health & Medicine (ProQuest)
from 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1998
- MeSH
- Phosphorylation MeSH
- Humans MeSH
- 14-3-3 Proteins * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Enzyme activity is regulated by several mechanisms, including phosphorylation. Phosphorylation is a key signal transduction process in all eukaryotic cells and is thus crucial for virtually all cellular processes. In addition to its direct effect on protein structure, phosphorylation also affects protein-protein interactions, such as binding to scaffolding 14-3-3 proteins, which selectively recognize phosphorylated motifs. These interactions then modulate the catalytic activity, cellular localisation and interactions of phosphorylated enzymes through different mechanisms. The aim of this mini-review is to highlight several examples of 14-3-3 protein-dependent mechanisms of enzyme regulation previously studied in our laboratory over the past decade. More specifically, we address here the regulation of the human enzymes ubiquitin ligase Nedd4-2, procaspase-2, calcium-calmodulin dependent kinases CaMKK1/2, and death-associated protein kinase 2 (DAPK2) and yeast neutral trehalase Nth1.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25005556
- 003
- CZ-PrNML
- 005
- 20250312151234.0
- 007
- ta
- 008
- 250213s2024 xr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.33549/physiolres.935306 $2 doi
- 035 __
- $a (PubMed)38647170
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Obsilova, V $u Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czech Republic. veronika.obsilova@fgu.cas.cz or obsil@natur.cuni.cz
- 245 10
- $a Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins / $c V. Obsilova, T. Obsil
- 520 9_
- $a Enzyme activity is regulated by several mechanisms, including phosphorylation. Phosphorylation is a key signal transduction process in all eukaryotic cells and is thus crucial for virtually all cellular processes. In addition to its direct effect on protein structure, phosphorylation also affects protein-protein interactions, such as binding to scaffolding 14-3-3 proteins, which selectively recognize phosphorylated motifs. These interactions then modulate the catalytic activity, cellular localisation and interactions of phosphorylated enzymes through different mechanisms. The aim of this mini-review is to highlight several examples of 14-3-3 protein-dependent mechanisms of enzyme regulation previously studied in our laboratory over the past decade. More specifically, we address here the regulation of the human enzymes ubiquitin ligase Nedd4-2, procaspase-2, calcium-calmodulin dependent kinases CaMKK1/2, and death-associated protein kinase 2 (DAPK2) and yeast neutral trehalase Nth1.
- 650 12
- $a proteiny 14-3-3 $x metabolismus $7 D048948
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a fosforylace $7 D010766
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Obsil, T
- 773 0_
- $w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 73, Suppl. 1 (2024), s. S401-S412
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/38647170 $y Pubmed
- 910 __
- $a ABA008 $b A 4120 $c 266 $y - $z 0
- 990 __
- $a 20250213 $b ABA008
- 991 __
- $a 20250312151241 $b ABA008
- 999 __
- $a min $b bmc $g 2283589 $s 1242576
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 73 $c Suppl. 1 $d S401-S412 $e 20240422 $i 1802-9973 $m Physiological research $n Physiol Res $x MED00003824
- LZP __
- $a Pubmed-20250213