Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Mathematical Models of Diffusion in Physiology

J. Janáček

. 2024 ; 73 (Suppl. 1) : S471-S476. [pub] 20240422

Status minimal Language English Country Czech Republic

Document type Journal Article, Review

Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25005557
003      
CZ-PrNML
005      
20250312151234.0
007      
ta
008      
250213s2024 xr f 000 0|eng||
009      
AR
024    7_
$a 10.33549/physiolres.935292 $2 doi
035    __
$a (PubMed)38647169
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Janáček, J $u Laboratory of Biomathematics, Institute of Physiology CAS, Praha 4, Czech Republic. Jiri.Janacek@fgu.cas.cz
245    10
$a Mathematical Models of Diffusion in Physiology / $c J. Janáček
520    9_
$a Diffusion is a mass transport phenomenon caused by chaotic thermal movements of molecules. Studying the transport in specific domain is simplified by using evolutionary differential equations for local concentration of the molecules instead of complete information on molecular paths [1]. Compounds in a fluid mixture tend to smooth out its spatial concentration inhomogeneities by diffusion. Rate of the transport is proportional to the concentration gradient and coefficient of diffusion of the compound in ordinary diffusion. The evolving concentration profile c(x,t) is then solution of evolutionary partial differential equation deltac/deltat=DDeltac where D is diffusion coefficient and Delta is Laplacian operator. Domain of the equation may be a region in space, plane or line, a manifold, such as surface embedded in space, or a graph. The Laplacian operates on smooth functions defined on given domain. We can use models of diffusion for such diverse tasks as: a) design of method for precise measurement of receptors mobility in plasmatic membrane by confocal microscopy [2], b) evaluation of complex geometry of trabeculae in developing heart [3] to show that the conduction pathway within the embryonic ventricle is determined by geometry of the trabeculae.
650    _2
$a zvířata $7 D000818
650    _2
$a lidé $7 D006801
650    _2
$a difuze $7 D004058
650    12
$a biologické modely $7 D008954
650    12
$a fyziologické jevy $7 D010829
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
773    0_
$w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 73, Suppl. 1 (2024), s. S471-S476
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38647169 $y Pubmed
910    __
$a ABA008 $b A 4120 $c 266 $y - $z 0
990    __
$a 20250213 $b ABA008
991    __
$a 20250312151241 $b ABA008
999    __
$a min $b bmc $g 2283590 $s 1242577
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 73 $c Suppl. 1 $d S471-S476 $e 20240422 $i 1802-9973 $m Physiological research $n Physiol Res $x MED00003824
LZP    __
$a Pubmed-20250213

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...