Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning

PA. Constable, JO. Pinzon-Arenas, LR. Mercado Diaz, IO. Lee, F. Marmolejo-Ramos, L. Loh, A. Zhdanov, M. Kulyabin, M. Brabec, DH. Skuse, DA. Thompson, H. Posada-Quintero

. 2024 ; 12 (1) : . [pub] 20241228

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25008764

Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25008764
003      
CZ-PrNML
005      
20250422095710.0
007      
ta
008      
250408s2024 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/bioengineering12010015 $2 doi
035    __
$a (PubMed)39851292
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Constable, Paul A $u Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia $1 https://orcid.org/0000000239941700
245    10
$a Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning / $c PA. Constable, JO. Pinzon-Arenas, LR. Mercado Diaz, IO. Lee, F. Marmolejo-Ramos, L. Loh, A. Zhdanov, M. Kulyabin, M. Brabec, DH. Skuse, DA. Thompson, H. Posada-Quintero
520    9_
$a Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pinzon-Arenas, Javier O $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA $1 https://orcid.org/0000000185212077
700    1_
$a Mercado Diaz, Luis Roberto $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA
700    1_
$a Lee, Irene O $u Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000300046802
700    1_
$a Marmolejo-Ramos, Fernando $u College of Psychology and Education, Flinders University, Adelaide 5000, SA, Australia $1 https://orcid.org/0000000346801287
700    1_
$a Loh, Lynne $u Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia
700    1_
$a Zhdanov, Aleksei $u "VisioMed.AI", Golovinskoe Highway, 8/2A, 125212 Moscow, Russia
700    1_
$a Kulyabin, Mikhail $u Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany $1 https://orcid.org/000900070440030X
700    1_
$a Brabec, Marek $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou Vezi 2, 182 00 Prague, Czech Republic $u National Institute of Public Health, Srobarova 48, 100 00 Prague, Czech Republic
700    1_
$a Skuse, David H $u Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000278915732
700    1_
$a Thompson, Dorothy A $u The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3BH, UK $u UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000154913911
700    1_
$a Posada-Quintero, Hugo $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA $1 https://orcid.org/0000000345144772
773    0_
$w MED00193488 $t Bioengineering $x 2306-5354 $g Roč. 12, č. 1 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39851292 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250408 $b ABA008
991    __
$a 20250422095711 $b ABA008
999    __
$a ok $b bmc $g 2306476 $s 1245839
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2024 $b 12 $c 1 $e 20241228 $i 2306-5354 $m Bioengineering $n Bioengineering (Basel) $x MED00193488
LZP    __
$a Pubmed-20250408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...