-
Je něco špatně v tomto záznamu ?
Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning
PA. Constable, JO. Pinzon-Arenas, LR. Mercado Diaz, IO. Lee, F. Marmolejo-Ramos, L. Loh, A. Zhdanov, M. Kulyabin, M. Brabec, DH. Skuse, DA. Thompson, H. Posada-Quintero
Status neindexováno Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2014
PubMed Central
od 2015
Europe PubMed Central
od 2015
ProQuest Central
od 2014-03-01
Open Access Digital Library
od 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
- Publikační typ
- časopisecké články MeSH
Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
Biomedical Engineering Department University of Connecticut Storrs CT 06269 USA
College of Psychology and Education Flinders University Adelaide 5000 SA Australia
National Institute of Public Health Srobarova 48 100 00 Prague Czech Republic
Pattern Recognition Lab Friedrich Alexander Universität Erlangen Nürnberg 91058 Erlangen Germany
UCL Great Ormond Street Institute of Child Health University College London London WC1N 1EH UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25008764
- 003
- CZ-PrNML
- 005
- 20250422095710.0
- 007
- ta
- 008
- 250408s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/bioengineering12010015 $2 doi
- 035 __
- $a (PubMed)39851292
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Constable, Paul A $u Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia $1 https://orcid.org/0000000239941700
- 245 10
- $a Spectral Analysis of Light-Adapted Electroretinograms in Neurodevelopmental Disorders: Classification with Machine Learning / $c PA. Constable, JO. Pinzon-Arenas, LR. Mercado Diaz, IO. Lee, F. Marmolejo-Ramos, L. Loh, A. Zhdanov, M. Kulyabin, M. Brabec, DH. Skuse, DA. Thompson, H. Posada-Quintero
- 520 9_
- $a Electroretinograms (ERGs) show differences between typically developing populations and those with a diagnosis of autism spectrum disorder (ASD) or attention deficit/hyperactivity disorder (ADHD). In a series of ERGs collected in ASD (n = 77), ADHD (n = 43), ASD + ADHD (n = 21), and control (n = 137) groups, this analysis explores the use of machine learning and feature selection techniques to improve the classification between these clinically defined groups. Standard time domain and signal analysis features were evaluated in different machine learning models. For ASD classification, a balanced accuracy (BA) of 0.87 was achieved for male participants. For ADHD, a BA of 0.84 was achieved for female participants. When a three-group model (ASD, ADHD, and control) the BA was lower, at 0.70, and fell further to 0.53 when all groups were included (ASD, ADHD, ASD + ADHD, and control). The findings support a role for the ERG in establishing a broad two-group classification of ASD or ADHD, but the model's performance depends upon sex and is limited when multiple classes are included in machine learning modeling.
- 590 __
- $a NEINDEXOVÁNO
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pinzon-Arenas, Javier O $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA $1 https://orcid.org/0000000185212077
- 700 1_
- $a Mercado Diaz, Luis Roberto $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA
- 700 1_
- $a Lee, Irene O $u Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000300046802
- 700 1_
- $a Marmolejo-Ramos, Fernando $u College of Psychology and Education, Flinders University, Adelaide 5000, SA, Australia $1 https://orcid.org/0000000346801287
- 700 1_
- $a Loh, Lynne $u Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide 5000, SA, Australia
- 700 1_
- $a Zhdanov, Aleksei $u "VisioMed.AI", Golovinskoe Highway, 8/2A, 125212 Moscow, Russia
- 700 1_
- $a Kulyabin, Mikhail $u Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany $1 https://orcid.org/000900070440030X
- 700 1_
- $a Brabec, Marek $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodarenskou Vezi 2, 182 00 Prague, Czech Republic $u National Institute of Public Health, Srobarova 48, 100 00 Prague, Czech Republic
- 700 1_
- $a Skuse, David H $u Behavioural and Brain Sciences Unit, Population Policy and Practice Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000278915732
- 700 1_
- $a Thompson, Dorothy A $u The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Trust, London WC1N 3BH, UK $u UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK $1 https://orcid.org/0000000154913911
- 700 1_
- $a Posada-Quintero, Hugo $u Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA $1 https://orcid.org/0000000345144772
- 773 0_
- $w MED00193488 $t Bioengineering $x 2306-5354 $g Roč. 12, č. 1 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39851292 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250408 $b ABA008
- 991 __
- $a 20250422095711 $b ABA008
- 999 __
- $a ok $b bmc $g 2306476 $s 1245839
- BAS __
- $a 3
- BAS __
- $a PreBMC-PubMed-not-MEDLINE
- BMC __
- $a 2024 $b 12 $c 1 $e 20241228 $i 2306-5354 $m Bioengineering $n Bioengineering (Basel) $x MED00193488
- LZP __
- $a Pubmed-20250408