TUBE Project: Transport-Derived Ultrafines and the Brain Effects

. 2021 Dec 28 ; 19 (1) : . [epub] 20211228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35010571

Grantová podpora
R01 AT011439 NCCIH NIH HHS - United States
R01 NS100366 NINDS NIH HHS - United States
RF1 AG057575 NIA NIH HHS - United States
RF1 NS110049 NINDS NIH HHS - United States

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer's disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.

A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland 70211 Kuopio Finland

Aerosol Physics Laboratory Physics Unit Faculty of Engineering and Natural Sciences Tampere University 33720 Tampere Finland

Atmospheric Composition Research Finnish Meteorological Institute 00101 Helsinki Finland

Biotalentum Ltd 2100 Godollo Hungary

Center for Translational Neuromedicine Faculty of Health and Medical Sciences University of Copenhagen 2200 Copenhagen Denmark

Centre for Sustainability Environment and Health National Institute for Public Health and the Environment 3721 MA Bilthoven The Netherlands

Centro Mario Molina Chile Strategic Studies Department Santiago 602 Chile

Computer Science Department University of Verona 37129 Verona Italy

Department of Environmental and Biological Sciences University of Eastern Finland 70210 Kuopio Finland

Department of Genetic Toxicology and Epigenetics Institute of Experimental Medicine of the CAS Videnska 1083 142 20 Prague Czech Republic

Department of Public Health and Clinical Medicine Division of Medicine Respiratory Medicine Umeå University 901 87 Umea Sweden

Faculty of Medicine University of Southampton Southampton SO17 1BJ UK

Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment Department of Occupational and Environmental Health School of Public Health Sun Yat sen University Guangzhou 510080 China

Institute for Risk Assessment Sciences Utrecht University 3508 TD Utrecht The Netherlands

IUF Leibniz Research Institute for Environmental Medicine 40225 Dusseldorf Germany

Mimetas BV 2312 BZ Oegstgeest The Netherlands

VSParticle B 5 2629 JD Delft The Netherlands

VTT Technical Research Centre of Finland Ltd 02044 Espoo Finland

Zobrazit více v PubMed

World Health Organization . WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization; Geneva, Switzerland: 2021. PubMed

Oberdörster G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health. 2001;74:1–8. doi: 10.1007/s004200000185. PubMed DOI

Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J., et al. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ. Heal. Perspect. 2006;114:1172–1178. doi: 10.1289/ehp.9030. PubMed DOI PMC

Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI

Inoue K.-I., Takano H. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation. Sci. World J. 2011;11:382–390. doi: 10.1100/tsw.2011.44. PubMed DOI PMC

Yacobi N.R., Malmstadt N., Fazlollahi F., DeMaio L., Marchelletta R., Hamm-Alvarez S.F., Borok Z., Kim K.J., Crandall E.D. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am. J. Respir. Cell. Mol. Biol. 2010;42:604–614. doi: 10.1165/rcmb.2009-0138OC. PubMed DOI PMC

Stone V., Miller M.R., Clift M., Elder A., Mills N.L., Møller P., Schins R.P., Vogel U., Kreyling W., Jensen K.A., et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect. 2017;125:106002. doi: 10.1289/EHP424. PubMed DOI PMC

Calderón-Garcidueñas L., Stommel E.W., Rajkumar R.P., Mukherjee P.S., Ayala A. Particulate Air Pollution and Risk of Neuropsychiatric Outcomes. What We Breathe, Swallow, and Put on Our Skin Matters. Int. J. Environ. Res. Public Health. 2021;18:11568. doi: 10.3390/ijerph182111568. PubMed DOI PMC

Chen H., Kwong J.C., Copes R., Hystad P., van Donkelaar A., Tu K., Brook J.R., Goldberg M.S., Martin R.V., Murray B., et al. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study. Environ. Int. 2017;108:271–277. doi: 10.1016/j.envint.2017.08.020. PubMed DOI

Shi L., Steenland K., Li H., Liu P., Zhang Y., Lyles R.H., Requia W.J., Ilango S.D., Chang H.H., Wingo T., et al. A national cohort study (2000–2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nat. Commun. 2021;12:6754. doi: 10.1038/s41467-021-27049-2. PubMed DOI PMC

Shin S., Burnett R.T., Kwong J.C., Hystad P., Van Donkelaar A., Brook J.R., Copes R., Tu K., Goldberg M.S., Villeneuve P., et al. Effects of ambient air pollution on incident Parkinson’s disease in Ontario, 2001 to 2013: A population-based cohort study. Int. J. Epidemiol. 2018;47:2038–2048. doi: 10.1093/ije/dyy172. PubMed DOI

Calderón-Garcidueñas L., Leray E., Heydarpour P., Torres-Jardón R., Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. Rev. Neurol. 2016;172:69–80. doi: 10.1016/j.neurol.2015.10.008. PubMed DOI

Heusinkveld H.J., Wahle T., Campbell A., Westerink R.H., Tran L., Johnston H., Stone V., Cassee F.R., Schins R.P. Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology. 2016;56:94–106. doi: 10.1016/j.neuro.2016.07.007. PubMed DOI

Power M.C., Adar S.D., Yanosky J.D., Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology. 2016;56:235–253. doi: 10.1016/j.neuro.2016.06.004. PubMed DOI PMC

Alemany S., Crous-Bou M., Vilor-Tejedor N., Milà-Alomà M., Suárez-Calvet M., Salvadó G., Cirach M., Arenaza-Urquijo E.M., Sanchez-Benavides G., Grau-Rivera O., et al. Associations between air pollution and biomarkers of Alzheimer’s disease in cognitively unimpaired individuals. Environ. Int. 2021;157:106864. doi: 10.1016/j.envint.2021.106864. PubMed DOI

Block M.L., Calderón-Garcidueñas L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009;32:506–516. doi: 10.1016/j.tins.2009.05.009. PubMed DOI PMC

Woodward N.C., Haghani A., Johnson R.G., Hsu T.M., Saffari A., Sioutas C., Kanoski S.E., Finch C.E., Morgan T.E. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl. Psychiatry. 2018;8:261. doi: 10.1038/s41398-018-0317-1. PubMed DOI PMC

Haghani A., Morgan T.E., Forman H.J., Finch C.E. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J. Alzheimer’s Dis. 2020;76:773–797. doi: 10.3233/JAD-200377. PubMed DOI

Gómez-Budia M., Konttinen H., Saveleva L., Korhonen P., Jalava P.I., Kanninen K.M., Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem. Int. 2020;136:104715. doi: 10.1016/j.neuint.2020.104715. PubMed DOI

Zhang H., Haghani A., Mousavi A.H., Cacciottolo M., D’Agostino C., Safi N., Sowlat M.H., Sioutas C., Morgan T.E., Finch C.E., et al. Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radic. Biol. Med. 2019;145:33–41. doi: 10.1016/j.freeradbiomed.2019.09.016. PubMed DOI PMC

Kwon H.-S., Ryu M.H., Carlsten C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020;52:318–328. doi: 10.1038/s12276-020-0405-1. PubMed DOI PMC

Bérubé K., Balharry D., Sexton K., Koshy L., Jones T. Combustion-Derived Nanoparticles: Mechanisms of Pulmonary Toxicity. Clin. Exp. Pharmacol. Physiol. 2007;34:1044–1050. doi: 10.1111/j.1440-1681.2007.04733.x. PubMed DOI

Belkacem I., Helali A., Khardi S., Chrouda A., Slimi K. Road traffic nanoparticle characteristics: Sustainable environment and mobility. Geosci. Front. 2021:101196. doi: 10.1016/j.gsf.2021.101196. DOI

Joodatnia P., Kumar P., Robins A. The behaviour of traffic produced nanoparticles in a car cabin and resulting exposure rates. Atmos. Environ. 2013;65:40–51. doi: 10.1016/j.atmosenv.2012.10.025. DOI

Okokon E.O., Yli-Tuomi T., Turunen A.W., Taimisto P., Pennanen A., Vouitsis I., Samaras Z., Voogt M., Keuken M., Lanki T. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environ. Res. 2017;154:181–189. doi: 10.1016/j.envres.2016.12.012. PubMed DOI

Bräuner E., Forchhammer L., Møller P., Simonsen J., Glasius M., Wåhlin P., Raaschou-Nielsen O., Loft S. Exposure to Ultrafine Particles from Ambient Air and Oxidative Stress–Induced DNA Damage. Environ. Health Perspect. 2007;115:1177–1182. doi: 10.1289/ehp.9984. PubMed DOI PMC

Salo L., Hyvärinen A., Jalava P., Teinilä K., Hooda R.K., Datta A., Saarikoski S., Lintusaari H., Lepistö T., Martikainen S., et al. The characteristics and size of lung-depositing particles vary significantly between high and low pollution traffic environments. Atmos. Environ. 2021;255:118421. doi: 10.1016/j.atmosenv.2021.118421. DOI

Rönkkö T., Kuuluvainen H., Karjalainen P., Keskinen J., Hillamo R., Niemi J., Pirjola L., Timonen H.J., Saarikoski S., Saukko E., et al. Traffic is a major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. USA. 2017;114:7549–7554. doi: 10.1073/pnas.1700830114. PubMed DOI PMC

Aakko-Saksa P., Koponen P., Roslund P., Laurikko J., Nylund N.-O., Karjalainen P., Timonen H. Comprehensive emission characterisation of exhaust from alternative fuelled cars. Atmos. Environ. 2020;236:117643. doi: 10.1016/j.atmosenv.2020.117643. DOI

Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J.I., Wiesner M.R., Nel A.E. Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. Nano Lett. 2006;6:1794–1807. doi: 10.1021/nl061025k. PubMed DOI

Miller M.R. The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochem. Soc. Trans. 2014;42:1006–1011. doi: 10.1042/BST20140090. PubMed DOI

Unfried K., Albrecht C., Klotz L.-O., Von Mikecz A., Grether-Beck S., Schins R.P. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology. 2007;1:52–71. doi: 10.1080/00222930701314932. DOI

Mo Y., Wan R., Chien S., Tollerud D.J., Zhang Q. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase. Toxicol. Appl. Pharmacol. 2009;236:183–193. doi: 10.1016/j.taap.2009.01.017. PubMed DOI

Brown D.M., Donaldson K., Borm P.J., Schins R.P., Dehnhardt M., Gilmour P., Jimenez L.A., Stone V. Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am. J. Physiol. Cell. Mol. Physiol. 2004;286:L344–L353. doi: 10.1152/ajplung.00139.2003. PubMed DOI

Schins R.P., Lightbody J.H., Borm P.J., Shi T., Donaldson K., Stone V. Inflammatory effects of coarse and fine particulate matter in relation to chemical and biological constituents. Toxicol. Appl. Pharmacol. 2004;195:1–11. doi: 10.1016/j.taap.2003.10.002. PubMed DOI

Jalava P.I., Happo M.S., Huttunen K., Sillanpää M., Hillamo R., Salonen R.O., Hirvonen M.-R. Chemical and microbial components of urban air PM cause seasonal variation of toxicological activity. Environ. Toxicol. Pharmacol. 2015;40:375–387. doi: 10.1016/j.etap.2015.06.023. PubMed DOI

Haghani A., Johnson R., Safi N., Zhang H., Thorwald M., Mousavi A., Woodward N.C., Shirmohammadi F., Coussa V., Wise J.P., et al. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: Comparison of total and filter-eluted nanoparticles. Environ. Int. 2020;136:105510. doi: 10.1016/j.envint.2020.105510. PubMed DOI PMC

Donaldson K., Poland C., Schins R.P.F. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 2010;4:414–420. doi: 10.3109/17435390.2010.482751. PubMed DOI

Wessels A., Birmili W., Albrecht C., Hellack B., Jermann E., Wick G., Harrison R.M., Schins R.P. Oxidant Generation and Toxicity of Size-Fractionated Ambient Particles in Human Lung Epithelial Cells. Environ. Sci. Technol. 2010;44:3539–3545. doi: 10.1021/es9036226. PubMed DOI

Topinka J., Milcova A., Schmuczerova J., Krouzek J., Hovorka J. Ultrafine particles are not major carriers of carcinogenic PAHs and their genotoxicity in size-segregated aerosols. Mutat. Res. Toxicol. Environ. Mutagen. 2013;754:1–6. doi: 10.1016/j.mrgentox.2012.12.016. PubMed DOI

Badran G., Ledoux F., Verdin A., Abbas I., Roumie M., Genevray P., Landkocz Y., Guidice J.-M.L., Garçon G., Courcot D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. Chemosphere. 2019;243:125440. doi: 10.1016/j.chemosphere.2019.125440. PubMed DOI

Flemming R.C., Önder Yildirim A., Elder A., Yu I.J., Ovrevik J., Sorig Hougaard K., Loft S., Schmid O., Schwarze P., Stoger T. White Paper: Ambient Ultrafine Particles: Evidence for Policy Makers. [(accessed on 5 November 2021)]. Available online: https://efca.net/files/WHITE%20PAPER-UFP%20evidence%20for%20policy%20makers%20(25%20OCT).pdf.

Lacroix G., Koch W., Ritter D., Gutleb A., Larsen S.T., Loret T., Zanetti F., Constant S., Chortarea S., Rothen-Rutishauser B., et al. Air–Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. Appl. Vitr. Toxicol. 2018;4:91–106. doi: 10.1089/aivt.2017.0034. PubMed DOI PMC

Geiser M., Jeannet N., Fierz M., Burtscher H. Evaluating Adverse Effects of Inhaled Nanoparticles by Realistic In Vitro Technology. Nanomaterials. 2017;7:49. doi: 10.3390/nano7020049. PubMed DOI PMC

Ritter D., Knebel J.W., Aufderheide M. In vitro exposure of isolated cells to native gaseous compounds Development and validation of an optimized system for human lung cells. Exp. Toxicol. Pathol. 2001;53:373–386. doi: 10.1078/0940-2993-00204. PubMed DOI

Chen P., Edelman J.D., Gharib S.A. Comparative Evaluation of miRNA Expression between in Vitro and in Vivo Airway Epithelium Demonstrates Widespread Differences. Am. J. Pathol. 2013;183:1405–1410. doi: 10.1016/j.ajpath.2013.07.007. PubMed DOI PMC

Sacks D., Baxter B., Campbell B.C.V., Carpenter J.S., Cognard C., Dippel D., Eesa M., Fischer U., Hausegger K., Hirsch J.A., et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2018;13:612–632. doi: 10.1016/j.jvir.2017.11.026. PubMed DOI

Ihantola T., Hirvonen M.-R., Ihalainen M., Hakkarainen H., Sippula O., Tissari J., Bauer S., Di Bucchianico S., Rastak N., Hartikainen A., et al. Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. Sci. Total. Environ. 2021;806:150489. doi: 10.1016/j.scitotenv.2021.150489. PubMed DOI

Diabaté S., Armand L., Murugadoss S., Dilger M., Fritsch-Decker S., Schlager C., Béal D., Arnal M.-E., Biola-Clier M., Ambrose S., et al. Air–Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. Nanomaterials. 2020;11:65. doi: 10.3390/nano11010065. PubMed DOI PMC

Candeias J., Schmidt-Weber C.B., Buters J. Dosing intact birch pollen grains at the air-liquid interface (ALI) to the immortalized human bronchial epithelial cell line BEAS-2B. PLoS ONE. 2021;16:e0259914. doi: 10.1371/journal.pone.0259914. PubMed DOI PMC

Fagerlund I., Dougalis A., Shakirzyanova A., Gomez-Budia M., Konttinen H., Ohtonen S., Feroze Fazaludeen M., Koskuvi M., Kuusisto J., Hernandez D., et al. Microglia orchestrate neuronal activity in brain organoids. SSRN Electron. J. 2020:416388. doi: 10.2139/ssrn.3773789. DOI

Younan D., Petkus A.J., Widaman K.F., Wang X., Casanova R., A Espeland M., Gatz M., Henderson V.W., E Manson J., Rapp S.R., et al. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease. Brain. 2019;143:289–302. doi: 10.1093/brain/awz348. PubMed DOI PMC

Calderón-Garcidueñas L., Solt A.C., Henríquez-Roldán C., Torres-Jardón R., Nuse B., Herritt L., Villarreal-Calderón R., Osnaya N., Stone I., García R., et al. Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-Synuclein in Children and Young Adults. Toxicol. Pathol. 2008;36:289–310. doi: 10.1177/0192623307313011. PubMed DOI

Hammond T.R., Robinton D., Stevens B. Microglia and the Brain: Complementary Partners in Development and Disease. Annu. Rev. Cell Dev. Biol. 2018;34:523–544. doi: 10.1146/annurev-cellbio-100616-060509. PubMed DOI

Malm T.M., Jay T., Landreth G.E. The Evolving Biology of Microglia in Alzheimer’s Disease. Neurotherapeutics. 2014;12:81–93. doi: 10.1007/s13311-014-0316-8. PubMed DOI PMC

Konttinen H., Silva M.E.C.C.D., Ohtonen S., Wojciechowski S., Shakirzyanova A., Caligola S., Giugno R., Ishchenko Y., Hernández D., Fazaludeen F., et al. PSEN1ΔE9, APPswe, and APOE4 Confer Disparate Phenotypes in Human iPSC-Derived Microglia. Stem Cell Rep. 2019;13:669–683. doi: 10.1016/j.stemcr.2019.08.004. PubMed DOI PMC

Chew S., Lampinen R., Saveleva L., Korhonen P., Mikhailov N., Grubman A., Polo J.M., Wilson T., Komppula M., Rönkkö T., et al. Urban air particulate matter induces mitochondrial dysfunction in human olfactory mucosal cells. Part. Fibre Toxicol. 2020;17:18. doi: 10.1186/s12989-020-00352-4. PubMed DOI PMC

Morris A., Sharp M.M., Albargothy N., Fernandes R., Hawkes C.A., Verma A., Weller R.O., Carare R.O. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016;131:725–736. doi: 10.1007/s00401-016-1555-z. PubMed DOI PMC

Hrabětová S., Nicholson C. Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem. Int. 2004;45:467–477. doi: 10.1016/j.neuint.2003.11.011. PubMed DOI

Morris A., Carare R.O., Schreiber S., Hawkes C.A. The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy. Front. Aging Neurosci. 2014;6:251. doi: 10.3389/fnagi.2014.00251. PubMed DOI PMC

Hawkes C.A., Jayakody N., Johnston D.A., Bechmann I., Carare R.O. Failure of Perivascular Drainage of β-amyloid in Cerebral Amyloid Angiopathy. Brain Pathol. 2014;24:396–403. doi: 10.1111/bpa.12159. PubMed DOI PMC

Hullmann M., Albrecht C., Van Berlo D., Gerlofs-Nijland M.E., Wahle T., Boots A.W., Krutmann J., Cassee F.R., Bayer T.A., Schins R.P.F. Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer’s disease. Part. Fibre Toxicol. 2017;14:35. doi: 10.1186/s12989-017-0213-5. PubMed DOI PMC

Nilsson L.-G., Bäckman L., Erngrund K., Nyberg L., Adolfsson R., Bucht G., Karlsson S., Widing M., Winblad B. The betula prospective cohort study: Memory, health, and aging. Aging, Neuropsychol. Cogn. 1997;4:1–32. doi: 10.1080/13825589708256633. DOI

Oudin A., Forsberg B., Adolfsson A.N., Lind N., Modig L., Nordin M., Nordin S., Adolfsson R., Nilsson L.-G. Traffic-Related Air Pollution and Dementia Incidence in Northern Sweden: A Longitudinal Study. Environ. Health Perspect. 2016;124:306–312. doi: 10.1289/ehp.1408322. PubMed DOI PMC

Oudin A., Segersson D., Adolfsson R., Forsberg B. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS ONE. 2018;13:e0198283. doi: 10.1371/journal.pone.0198283. PubMed DOI PMC

Chen H., Kwong J.C., Copes R., Tu K., Villeneuve P., van Donkelaar A., Hystad P., Martin R.V., Murray B., Jessiman B., et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. Lancet. 2017;389:718–726. doi: 10.1016/S0140-6736(16)32399-6. PubMed DOI

Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne C., Burns A., Cohen-Mansfield J., Cooper C., et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413–446. doi: 10.1016/S0140-6736(20)30367-6. PubMed DOI PMC

Lewis J., Baddeley A.D., Bonham K.G., Lovett D. Traffic Pollution and Mental Efficiency. Nature. 1970;225:95–97. doi: 10.1038/225095a0. PubMed DOI

Linares C., Culqui D., Carmona R., Ortiz C., Díaz J. Short-term association between environmental factors and hospital admissions due to dementia in Madrid. Environ. Res. 2017;152:214–220. doi: 10.1016/j.envres.2016.10.020. PubMed DOI

Oudin A., Åström D.O., Asplund P., Steingrimsson S., Szabo Z., Carlsen H.K. The association between daily concentrations of air pollution and visits to a psychiatric emergency unit: A case-crossover study. Environ. Health. 2018;17:4. doi: 10.1186/s12940-017-0348-8. PubMed DOI PMC

Ajmani G.S., Suh H., Pinto J.M. Effects of Ambient Air Pollution Exposure on Olfaction: A Review. Environ. Health Perspect. 2016;124:1683–1693. doi: 10.1289/EHP136. PubMed DOI PMC

Presto A.A., Saha P.K., Robinson A.L. Past, present, and future of ultrafine particle exposures in North America. Atmos. Environ. X. 2021;10:100109. doi: 10.1016/j.aeaoa.2021.100109. DOI

Timonen H., Karjalainen P., Aalto P., Saarikoski S., Mylläri F., Karvosenoja N., Jalava P., Asmi E., Aakko-Saksa P., Saukkonen N., et al. Adaptation of Black Carbon Footprint Concept Would Accelerate Mitigation of Global Warming. Environ. Sci. Technol. 2019;53:12153–12155. doi: 10.1021/acs.est.9b05586. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...