-
Je něco špatně v tomto záznamu ?
MInfer: Bridging MetaboAnalyst and Jacobian analysis for metabolomic networks
J. Schwarzerova, EG. Mate, J. Idkowiak, D. Olesova, A. Kvasnicka, D. Dobesova, D. Friedecky, V. Provaznik, J. Skarda, W. Weckwerth, T. Nägele
Jazyk angličtina Země Irsko
Typ dokumentu časopisecké články
- MeSH
- algoritmy MeSH
- lidé MeSH
- metabolické sítě a dráhy * MeSH
- metabolomika * MeSH
- software MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVE: Metabolomic interaction networks provide critical insights into the dynamic relationships between metabolites and their regulatory mechanisms. This study introduces MInfer, a novel computational framework that integrates outputs from MetaboAnalyst, a widely used metabolomic analysis tool, with Jacobian analysis to enhance the derivation and interpretation of these networks. METHODS: MInfer combines the comprehensive data processing capabilities of MetaboAnalyst with the mathematical modeling power of Jacobian analysis. This framework was applied to various metabolomic datasets, employing advanced statistical tests to construct interaction networks and identify key metabolic pathways. RESULTS: The application of MInfer revealed significant metabolic pathways and potential regulatory mechanisms across multiple datasets. The framework demonstrated high precision, sensitivity, and specificity in identifying interactions, enabling robust network interpretations. CONCLUSIONS: MInfer enhances the interpretation of metabolomic data by providing detailed interaction networks and uncovering key regulatory insights. This tool holds significant potential for advancing the study of complex biological systems.
Department of Medical Biochemistry Oslo University Hospital Oslo Norway
Faculty of Biology Plant Evolutionary Cell Biology Ludwig Maximilians Universität München Germany
Institute of Neuroimmunology Slovak Academy of Sciences Slovak Republic
Molecular Systems Biology University of Vienna Vienna Austria
Vienna Metabolomics Center University of Vienna Vienna Austria
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25009292
- 003
- CZ-PrNML
- 005
- 20250429134544.0
- 007
- ta
- 008
- 250415e20250218ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2025.108672 $2 doi
- 035 __
- $a (PubMed)39999596
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Schwarzerova, Jana $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic; Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria; Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic. Electronic address: Jana.Schwarzerova@vut.cz
- 245 10
- $a MInfer: Bridging MetaboAnalyst and Jacobian analysis for metabolomic networks / $c J. Schwarzerova, EG. Mate, J. Idkowiak, D. Olesova, A. Kvasnicka, D. Dobesova, D. Friedecky, V. Provaznik, J. Skarda, W. Weckwerth, T. Nägele
- 520 9_
- $a BACKGROUND AND OBJECTIVE: Metabolomic interaction networks provide critical insights into the dynamic relationships between metabolites and their regulatory mechanisms. This study introduces MInfer, a novel computational framework that integrates outputs from MetaboAnalyst, a widely used metabolomic analysis tool, with Jacobian analysis to enhance the derivation and interpretation of these networks. METHODS: MInfer combines the comprehensive data processing capabilities of MetaboAnalyst with the mathematical modeling power of Jacobian analysis. This framework was applied to various metabolomic datasets, employing advanced statistical tests to construct interaction networks and identify key metabolic pathways. RESULTS: The application of MInfer revealed significant metabolic pathways and potential regulatory mechanisms across multiple datasets. The framework demonstrated high precision, sensitivity, and specificity in identifying interactions, enabling robust network interpretations. CONCLUSIONS: MInfer enhances the interpretation of metabolomic data by providing detailed interaction networks and uncovering key regulatory insights. This tool holds significant potential for advancing the study of complex biological systems.
- 650 12
- $a metabolomika $7 D055432
- 650 12
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a software $7 D012984
- 650 _2
- $a výpočetní biologie $7 D019295
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mate, Erdő Gabor $u Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria
- 700 1_
- $a Idkowiak, Jakub $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Czech Republic
- 700 1_
- $a Olesova, Dominika $u Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Slovak Republic; Institute of Neuroimmunology, Slovak Academy of Sciences, Slovak Republic
- 700 1_
- $a Kvasnicka, Ales $u Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- 700 1_
- $a Dobesova, Dana $u Department of Clinical Biochemistry, Palacký University Olomouc and University Hospital Olomouc, Czech Republic
- 700 1_
- $a Friedecky, David $u Department of Clinical Biochemistry, Palacký University Olomouc and University Hospital Olomouc, Czech Republic
- 700 1_
- $a Provaznik, Valentyna $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic
- 700 1_
- $a Skarda, Jozef $u Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
- 700 1_
- $a Weckwerth, Wolfram $u Molecular Systems Biology (MOSYS), University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria. Electronic address: wolfram.weckwerth@univie.ac.at
- 700 1_
- $a Nägele, Thomas $u Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Germany. Electronic address: thomas.naegele@biologie.uni-muenchen.de
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 263 (20250218), s. 108672
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39999596 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429134539 $b ABA008
- 999 __
- $a ok $b bmc $g 2310957 $s 1246373
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 263 $c - $d 108672 $e 20250218 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- LZP __
- $a Pubmed-20250415