Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways

D. Benak, P. Alanova, K. Holzerova, M. Chalupova, B. Opletalova, F. Kolar, G. Pavlinkova, M. Hlavackova

. 2025 ; 31 (1) : 105. [pub] 20250318

Language English Country England, Great Britain

Document type Journal Article, Review

Grant support
80824 Grantová Agentura, Univerzita Karlova
270623 Grantová Agentura, Univerzita Karlova
LX22NPO5104 Ministerstvo Školství, Mládeže a Tělovýchovy
24-10497S Grantová Agentura České Republiky

BACKGROUND: Epitranscriptomics, the study of RNA modifications such as N6-methyladenosine (m6A), provides a novel layer of gene expression regulation with implications for numerous biological processes, including cellular adaptation to hypoxia. Hypoxia-inducible factor-1 (HIF-1), a master regulator of the cellular response to low oxygen, plays a critical role in adaptive and pathological processes, including cancer, ischemic heart disease, and metabolic disorders. Recent discoveries accent the dynamic interplay between m6A modifications and HIF-1 signaling, revealing a complex bidirectional regulatory network. While the roles of other RNA modifications in HIF-1 regulation remain largely unexplored, emerging evidence suggests their potential significance. MAIN BODY: This review examines the reciprocal regulation between HIF-1 and epitranscriptomic machinery, including m6A writers, readers, and erasers. HIF-1 modulates the expression of key m6A components, while its own mRNA is regulated by m6A modifications, positioning HIF-1 as both a regulator and a target in this system. This interaction enhances our understanding of cellular hypoxic responses and opens avenues for clinical applications in treating conditions like cancer and ischemic heart disease. Promising progress has been made in developing selective inhibitors targeting the m6A-HIF-1 regulatory axis. However, challenges such as off-target effects and the complexity of RNA modification dynamics remain significant barriers to clinical translation. CONCLUSION: The intricate interplay between m6A and HIF-1 highlights the critical role of epitranscriptomics in hypoxia-driven processes. Further research into these regulatory networks could drive therapeutic innovation in cancer, ischemic heart disease, and other hypoxia-related conditions. Overcoming challenges in specificity and off-target effects will be essential for realizing the potential of these emerging therapies.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25009471
003      
CZ-PrNML
005      
20250429134734.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s10020-025-01149-x $2 doi
035    __
$a (PubMed)40102715
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Benak, Daniel $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
245    10
$a Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways / $c D. Benak, P. Alanova, K. Holzerova, M. Chalupova, B. Opletalova, F. Kolar, G. Pavlinkova, M. Hlavackova
520    9_
$a BACKGROUND: Epitranscriptomics, the study of RNA modifications such as N6-methyladenosine (m6A), provides a novel layer of gene expression regulation with implications for numerous biological processes, including cellular adaptation to hypoxia. Hypoxia-inducible factor-1 (HIF-1), a master regulator of the cellular response to low oxygen, plays a critical role in adaptive and pathological processes, including cancer, ischemic heart disease, and metabolic disorders. Recent discoveries accent the dynamic interplay between m6A modifications and HIF-1 signaling, revealing a complex bidirectional regulatory network. While the roles of other RNA modifications in HIF-1 regulation remain largely unexplored, emerging evidence suggests their potential significance. MAIN BODY: This review examines the reciprocal regulation between HIF-1 and epitranscriptomic machinery, including m6A writers, readers, and erasers. HIF-1 modulates the expression of key m6A components, while its own mRNA is regulated by m6A modifications, positioning HIF-1 as both a regulator and a target in this system. This interaction enhances our understanding of cellular hypoxic responses and opens avenues for clinical applications in treating conditions like cancer and ischemic heart disease. Promising progress has been made in developing selective inhibitors targeting the m6A-HIF-1 regulatory axis. However, challenges such as off-target effects and the complexity of RNA modification dynamics remain significant barriers to clinical translation. CONCLUSION: The intricate interplay between m6A and HIF-1 highlights the critical role of epitranscriptomics in hypoxia-driven processes. Further research into these regulatory networks could drive therapeutic innovation in cancer, ischemic heart disease, and other hypoxia-related conditions. Overcoming challenges in specificity and off-target effects will be essential for realizing the potential of these emerging therapies.
650    _2
$a lidé $7 D006801
650    12
$a epigeneze genetická $7 D044127
650    12
$a faktor 1 indukovatelný hypoxií $x metabolismus $x genetika $7 D051793
650    _2
$a zvířata $7 D000818
650    _2
$a signální transdukce $7 D015398
650    _2
$a transkriptom $7 D059467
650    _2
$a adenosin $x analogy a deriváty $x metabolismus $7 D000241
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a posttranskripční úpravy RNA $7 D012323
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Alanova, Petra $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Holzerova, Kristyna $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Chalupova, Miloslava $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Opletalova, Barbora $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
700    1_
$a Kolar, Frantisek $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Pavlinkova, Gabriela $u Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
700    1_
$a Hlavackova, Marketa $u Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. marketa.hlavackova@fgu.cas.cz
773    0_
$w MED00003396 $t Molecular medicine (Cambridge, Mass. Print) $x 1528-3658 $g Roč. 31, č. 1 (2025), s. 105
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40102715 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134730 $b ABA008
999    __
$a ok $b bmc $g 2311075 $s 1246552
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 31 $c 1 $d 105 $e 20250318 $i 1528-3658 $m Molecular medicine (Cambridge, Mass. Print) $n Mol Med $x MED00003396
GRA    __
$a 80824 $p Grantová Agentura, Univerzita Karlova
GRA    __
$a 270623 $p Grantová Agentura, Univerzita Karlova
GRA    __
$a LX22NPO5104 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a 24-10497S $p Grantová Agentura České Republiky
LZP    __
$a Pubmed-20250415

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...