• Je něco špatně v tomto záznamu ?

A Taxonomy of Neuroscientific Strategies Based on Interaction Orders

M. Neri, A. Brovelli, S. Castro, F. Fraisopi, M. Gatica, R. Herzog, PAM. Mediano, I. Mindlin, G. Petri, D. Bor, FE. Rosas, A. Tramacere, M. Estarellas

. 2025 ; 61 (3) : e16676. [pub] -

Jazyk angličtina Země Francie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010001

Grantová podpora
ANR-16-CONV000X/ANR-17-EURE-0029 Agence Nationale de la Recherche
AMX-19-IET-004 Excellence Initiative of Aix-Marseille University-A*MIDEX

In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010001
003      
CZ-PrNML
005      
20250429135106.0
007      
ta
008      
250415s2025 fr f 000 0|eng||
009      
AR
024    7_
$a 10.1111/ejn.16676 $2 doi
035    __
$a (PubMed)39906974
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a fr
100    1_
$a Neri, Matteo $u Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France $1 https://orcid.org/000900070998552X
245    12
$a A Taxonomy of Neuroscientific Strategies Based on Interaction Orders / $c M. Neri, A. Brovelli, S. Castro, F. Fraisopi, M. Gatica, R. Herzog, PAM. Mediano, I. Mindlin, G. Petri, D. Bor, FE. Rosas, A. Tramacere, M. Estarellas
520    9_
$a In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.
650    _2
$a lidé $7 D006801
650    12
$a neurovědy $x metody $7 D009488
650    12
$a mozek $x fyziologie $7 D001921
650    _2
$a zvířata $7 D000818
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a modely neurologické $7 D008959
650    _2
$a kognice $x fyziologie $7 D003071
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Brovelli, Andrea $u Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
700    1_
$a Castro, Samy $u Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France $u Institut de Neurosciences Des Systèmes (INS), Aix-Marseille Université, UMR 1106, Marseille, France
700    1_
$a Fraisopi, Fausto $u Institute for Advanced Study, Aix-Marseille University, Marseille, France
700    1_
$a Gatica, Marilyn $u NPLab, Network Science Institute, Northeastern University London, London, UK
700    1_
$a Herzog, Ruben $u DreamTeam, Paris Brain Institute (ICM), Paris, France
700    1_
$a Mediano, Pedro A M $u Department of Computing, Imperial College London, London, UK $u Division of Psychology and Language Sciences, University College London, London, UK
700    1_
$a Mindlin, Ivan $u DreamTeam, Paris Brain Institute (ICM), Paris, France $u PICNIC lab, Paris Brain Institute (ICM), Paris, France
700    1_
$a Petri, Giovanni $u NPLab, Network Science Institute, Northeastern University London, London, UK $u Department of Physics, Northeastern University, Boston, Massachusetts, USA $u NPLab, CENTAI Institute, Turin, Italy
700    1_
$a Bor, Daniel $u Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK $u Department of Psychology, University of Cambridge, Cambridge, UK
700    1_
$a Rosas, Fernando E $u Sussex Centre for Consciousness Science and Sussex AI, Department of Informatics, University of Sussex, Brighton, UK $u Center for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK $u Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK $u Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS), Prague, Czechia
700    1_
$a Tramacere, Antonella $u Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
700    1_
$a Estarellas, Mar $u Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK $u Department of Psychology, University of Cambridge, Cambridge, UK $1 https://orcid.org/0000000195663066
773    0_
$w MED00011483 $t European journal of neuroscience $x 1460-9568 $g Roč. 61, č. 3 (2025), s. e16676
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39906974 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135102 $b ABA008
999    __
$a ok $b bmc $g 2311397 $s 1247082
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 61 $c 3 $d e16676 $e - $i 1460-9568 $m European journal of neuroscience $n Eur J Neurosci $x MED00011483
GRA    __
$a ANR-16-CONV000X/ANR-17-EURE-0029 $p Agence Nationale de la Recherche
GRA    __
$a AMX-19-IET-004 $p Excellence Initiative of Aix-Marseille University-A*MIDEX
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...