Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria

P. Lasch, W. Beyer, A. Bosch, R. Borriss, M. Drevinek, S. Dupke, M. Ehling-Schulz, X. Gao, R. Grunow, D. Jacob, SR. Klee, A. Paauw, J. Rau, A. Schneider, HC. Scholz, M. Stämmler, LT. Thanh Tam, H. Tomaso, G. Werner, J. Doellinger

. 2025 ; 12 (1) : 187. [pub] 20250131

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, dataset

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010154

Grantová podpora
031B0582B and 01DN15016 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
031B0582A Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
n/a Bundesministerium für Gesundheit (Federal Ministry of Health, Germany)

Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010154
003      
CZ-PrNML
005      
20250429135530.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41597-025-04504-z $2 doi
035    __
$a (PubMed)39890826
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Lasch, Peter $u Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany. LaschP@rki.de $1 https://orcid.org/0000000161933144
245    12
$a A MALDI-ToF mass spectrometry database for identification and classification of highly pathogenic bacteria / $c P. Lasch, W. Beyer, A. Bosch, R. Borriss, M. Drevinek, S. Dupke, M. Ehling-Schulz, X. Gao, R. Grunow, D. Jacob, SR. Klee, A. Paauw, J. Rau, A. Schneider, HC. Scholz, M. Stämmler, LT. Thanh Tam, H. Tomaso, G. Werner, J. Doellinger
520    9_
$a Today, MALDI-ToF MS is an established technique to characterize and identify pathogenic bacteria. The technique is increasingly applied by clinical microbiological laboratories that use commercially available complete solutions, including spectra databases covering clinically relevant bacteria. Such databases are validated for clinical, or research applications, but are often less comprehensive concerning highly pathogenic bacteria (HPB). To improve MALDI-ToF MS diagnostics of HPB we initiated a program to develop protocols for reliable and MALDI-compatible microbial inactivation and to acquire mass spectra thereof many years ago. As a result of this project, databases covering HPB, closely related bacteria, and bacteria of clinical relevance have been made publicly available on platforms such as ZENODO. This publication in detail describes the most recent version of this database. The dataset contains a total of 11,055 spectra from altogether 1,601 microbial strains and 264 species and is primarily intended to improve the diagnosis of HPB. We hope that our MALDI-ToF MS data may also be a valuable resource for developing machine learning-based bacterial identification and classification methods.
650    12
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $7 D019032
650    12
$a Bacteria $x klasifikace $x izolace a purifikace $7 D001419
650    12
$a databáze faktografické $7 D016208
650    _2
$a lidé $7 D006801
655    _2
$a časopisecké články $7 D016428
655    _2
$a dataset $7 D064886
700    1_
$a Beyer, Wolfgang $u Advisory Panel of the Medical Academy of the German Armed Forces, Bundeswehr Institute of Microbiology, Munich, Germany
700    1_
$a Bosch, Alejandra $u CINDEFI-UNLP-CONICET, CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
700    1_
$a Borriss, Rainer $u Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
700    1_
$a Drevinek, Michal $u National Institute for Nuclear, Chemical and Biological Protection, Milin, Czech Republic
700    1_
$a Dupke, Susann $u Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
700    1_
$a Ehling-Schulz, Monika $u Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria $1 https://orcid.org/0000000173840594
700    1_
$a Gao, Xuewen $u College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing, People's Republic of China
700    1_
$a Grunow, Roland $u Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
700    1_
$a Jacob, Daniela $u Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
700    1_
$a Klee, Silke R $u Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
700    1_
$a Paauw, Armand $u Netherlands Organization for Applied Scientific Research TNO, Department of CBRN Protection, Rijswijk, The Netherlands
700    1_
$a Rau, Jörg $u Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Fellbach, Germany
700    1_
$a Schneider, Andy $u Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
700    1_
$a Scholz, Holger C $u Robert Koch Institute, ZBS 2 - Highly Pathogenic Microorganisms, Berlin, Germany
700    1_
$a Stämmler, Maren $u Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
700    1_
$a Thanh Tam, Le Thi $u Division of Plant Pathology and Phyto-Immunology, Plant Protection Research Institute, Hanoi, Vietnam
700    1_
$a Tomaso, Herbert $u Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Jena, Germany
700    1_
$a Werner, Guido $u Robert Koch Institute, Nosocomial Pathogens and Antibiotic Resistances (FG13) and National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
700    1_
$a Doellinger, Joerg $u Robert Koch Institute, ZBS 6 - Proteomics and Spectroscopy, Seestraße 10, Berlin, D-13353, Germany
773    0_
$w MED00208692 $t Scientific data $x 2052-4463 $g Roč. 12, č. 1 (2025), s. 187
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39890826 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135526 $b ABA008
999    __
$a ok $b bmc $g 2311502 $s 1247235
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 12 $c 1 $d 187 $e 20250131 $i 2052-4463 $m Scientific data $n Sci Data $x MED00208692
GRA    __
$a 031B0582B and 01DN15016 $p Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
GRA    __
$a 031B0582A $p Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
GRA    __
$a n/a $p Bundesministerium für Gesundheit (Federal Ministry of Health, Germany)
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...