Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Telomemore enables single-cell analysis of cell cycle and chromatin condensation

I. Yakovenko, IS. Mihai, M. Selinger, W. Rosenbaum, A. Dernstedt, R. Gröning, J. Trygg, L. Carroll, M. Forsell, J. Henriksson

. 2025 ; 53 (3) : . [pub] 20250124

Language English Country England, Great Britain

Document type Journal Article

Grant support
Swedish National Infrastructure for Computing (SNIC)
2018-05973 Swedish Research Council
2021-06602 Vetenskapsrådet
233102 Swedish Cancer Society
JCK-0055 Kempestiftelserna
KAW 2020.0239 SciLifeLab & Wallenberg Data Driven Life Science Program
Swedish Bibsam Consortium

Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010192
003      
CZ-PrNML
005      
20250429134800.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkaf031 $2 doi
035    __
$a (PubMed)39878215
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Yakovenko, Iryna $u Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden $u Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $1 https://orcid.org/0009000352352999
245    10
$a Telomemore enables single-cell analysis of cell cycle and chromatin condensation / $c I. Yakovenko, IS. Mihai, M. Selinger, W. Rosenbaum, A. Dernstedt, R. Gröning, J. Trygg, L. Carroll, M. Forsell, J. Henriksson
520    9_
$a Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.
650    12
$a analýza jednotlivých buněk $x metody $7 D059010
650    12
$a chromatin $x metabolismus $x chemie $x genetika $7 D002843
650    _2
$a lidé $7 D006801
650    12
$a buněčný cyklus $x genetika $7 D002453
650    12
$a telomery $x genetika $7 D016615
650    _2
$a sekvenování transkriptomu $x metody $7 D000081246
650    _2
$a B-lymfocyty $x metabolismus $x cytologie $7 D001402
650    _2
$a fibroblasty $x metabolismus $x cytologie $7 D005347
650    _2
$a ChiP sekvenování $x metody $7 D000081204
650    _2
$a vazebná místa $7 D001665
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mihai, Ionut Sebastian $u Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden $u Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Industrial Doctoral School, Umeå University, Umeå, Sweden $1 https://orcid.org/0000000293225879
700    1_
$a Selinger, Martin $u Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden $u Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Department of Chemistry, Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic $1 https://orcid.org/0000000254209702
700    1_
$a Rosenbaum, William $u Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $1 https://orcid.org/0000000322747343
700    1_
$a Dernstedt, Andy $u Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden $1 https://orcid.org/0000000160485300
700    1_
$a Gröning, Remigius $u Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden $1 https://orcid.org/0000000153848038
700    1_
$a Trygg, Johan $u Department of Chemistry, Umeå University, Linnaeus väg 10, Umeå universitet, 901 87, Umeå, Sweden $u Sartorius Corporate Research, Östra Strandgatan 24, 903 33, Umeå, Sweden $1 https://orcid.org/0000000337996094
700    1_
$a Carroll, Laura $u Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden $u Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden $1 https://orcid.org/0000000236770192
700    1_
$a Forsell, Mattias $u Department of Clinical Microbiology, Umeå University, Biomedicinbyggnaden 6M, Umeå universitetssjukhus, 901 87, Umeå, Sweden $1 https://orcid.org/000000016904742X
700    1_
$a Henriksson, Johan $u Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Umeå Centre for Microbial Research (UCMR), Universitetstorget 4, 901 87, Umeå, Sweden $u Department of Molecular Biology, Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden $u Integrated Science Lab (IceLab), Umeå University, Naturvetarhuset, Universitetsvägen, 901 87, Umeå, Sweden $1 https://orcid.org/0000000277452844
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 3 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39878215 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134755 $b ABA008
999    __
$a ok $b bmc $g 2311517 $s 1247273
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 53 $c 3 $e 20250124 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$p Swedish National Infrastructure for Computing (SNIC)
GRA    __
$a 2018-05973 $p Swedish Research Council
GRA    __
$a 2021-06602 $p Vetenskapsrådet
GRA    __
$a 233102 $p Swedish Cancer Society
GRA    __
$a JCK-0055 $p Kempestiftelserna
GRA    __
$a KAW 2020.0239 $p SciLifeLab & Wallenberg Data Driven Life Science Program
GRA    __
$p Swedish Bibsam Consortium
LZP    __
$a Pubmed-20250415

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...